

Design Example Report

Title	45 W Single Output Secondary Side Regulated Flyback Converter Using LinkSwitch [™] -HP LNK6777E						
Specification	90 VAC – 265 VAC Input; 19 V, 2.37 A Output						
Application	Adapter						
Author	Applications Engineering Department						
Document Number	DER-453						
Date	August 23, 2016						
Revision	1.1						

Summary and Features

- Highly Energy Efficient
 - 88% full load and active mode efficiency
 - Meets DoE 6 efficiency requirements (end of cable)
 - <100 mW no-load consumption
 - Multimode operation maximizes efficiency over full load range
- Demonstrates use of optocoupler feedback with LinkSwitch-HP devices
 - Enhanced output regulation and transient response
- Extensive protection features including OVP, OTP, brown-in/out, line overvoltage, and lost-regulation (auto-restart)
- 132 kHz switching frequency for small transformer and output filter size
- Switching frequency jitter for reduced EMI
- Meets EN-550022 and CISPR-22 Class B conducted/radiated EMI with 6 dB margin.
- Meets IEC61000-4-5, 3 kV / 3 kV surge.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

Power Integrations

5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 *www.power.com*

Table of Contents

1	Introduction	4							
2	Power Supply Specification6								
3	Schematic								
4	Circuit Description								
	4.1 Input Rectification and Filtering								
	4.2 LinkSwitch-HP Primary								
	4.3 Primary RCD Clamp								
	4.4 Output Rectification								
	4.5 External Current Limit Setting-								
	4.6 Feedback and Compensation Network								
	4.6.1 Primary Side Regulation								
	4.6.2 Secondary Side Regulation								
	, ,								
г									
5	PCB Layout								
6	Bill of Materials								
7	Transformer Design Spreadsheet								
8	Magnetics								
	8.1 Transformer T1 Specification								
	8.1.1 Electrical Diagram								
	8.1.2 Electrical Specifications								
	8.1.3 Materials								
	8.1.4 Transformer Build Diagram								
	8.1.5 Winding Construction								
	8.1.6 Winding Illustrations								
	8.2 Inductor L1 Specification	27							
	8.2.1 Electrical Diagram	27							
	8.2.2 Electrical Specifications	27							
	8.2.3 Materials	27							
	8.2.4 Illustration	27							
	8.3 Inductor L2 Specification	28							
	8.3.1 Electrical Diagram	28							
	8.3.2 Electrical Specifications								
	8.3.3 Materials								
	8.3.4 Winding Instructions								
	8.3.5 Winding Illustrations								
9	Heat Sink Assemblies								
	9.1 eSIP Heat Sink								
	9.1.1 eSIP Heat Sink Fabrication Drawing								
	9.1.2 eSIP Heat Sink Assembly Drawing								
	9.1.3 eSIP and Heat Sink Assembly Drawing								
	9.2 Diode Heat Sink								
	9.2 Diode Heat Sink								
	5								
10	9.2.2 Diode and Heat Sink Assembly Drawing								
10									
	10.1 Active Mode Efficiency								
	10.2 Full Load Efficiency	40							

10.3	No-Load/Light Load Input Power	41							
10.4	Line Regulation								
10.5	Load Regulation4								
11 Wav	/eforms	44							
11.1	Drain Voltage and Current, Normal Operation	44							
11.2	Drain Voltage and Current Start-up Profile	44							
11.3	Load Transient Response	45							
11.4	Output Voltage Start-Up								
11.5	Output Rectifier Diode Voltage Waveforms	48							
11.6	Output Ripple and Noise Measurements	49							
11.6	5.1 Ripple Measurement Technique	49							
11.6	5.2 Ripple and Noise Measurement Results	50							
12 The	rmal Performance								
12.1	Thermal Performance (T _{AMBIENT} = 25 °C)								
12.2	Thermal Performance (T _{AMBIENT} = 45 °C)	53							
13 Gair	n-Phase Measurement	54							
13.1	Gain-Phase Plot								
	Surge (Resistive Full Load at the Output)								
	(Resistive Full Load at the Output)								
16 EMI	Tests at Full Load	57							
16.1	Conducted EMI Test Set-Up								
16.2	Conducted EMI Results	58							
16.3	Radiated EMI Test Setup	62							
16.4	Radiated EMI Results (Vertical Only up to 3 M)	63							
17 Rev	ision History	65							
Importa	ant Note:								

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This report describes a universal input, 19 V, 45 W isolated flyback converter employing LNK6777E from the LinkSwitch-HP family of ICs. It contains the complete specification of the power supply, a detailed circuit diagram, the entire bill of materials required to build the supply, extensive documentation of the power transformer, along with test data and waveform plots of the most important electrical waveforms.

The most significant aspect of this design is to demonstrate implementing secondary side optocoupler feedback with LinkSwitch-HP devices.

Typical LinkSwitch-HP designs are primary side regulated however the addition of optocoupler feedback allows the part to address applications with both stringent transient response (0 to 100%) and no-load input power (<100 mW) requirements.

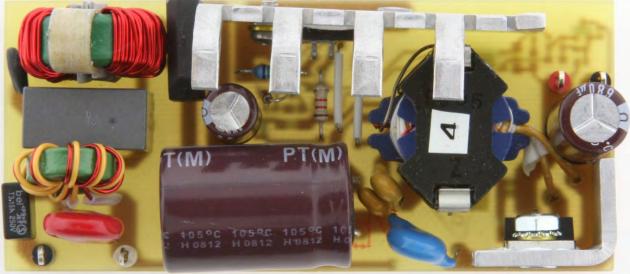


Figure 1 – Prototype Top View.

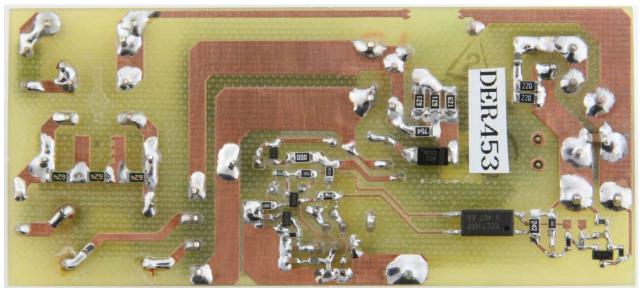
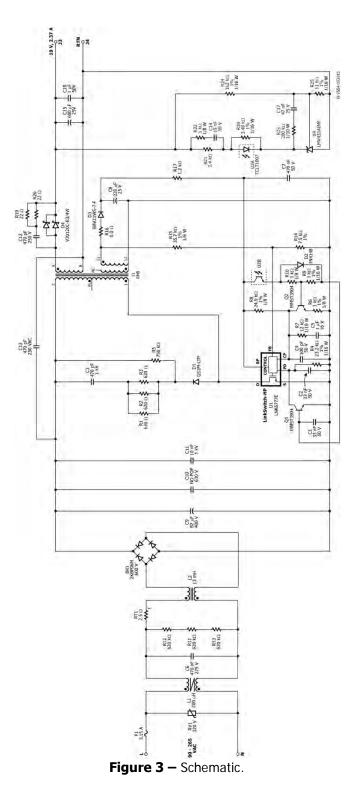


Figure 2 – Prototype Bottom View.


2 Power Supply Specification

The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

Description	Symbol	Min	Тур	Max	Units	Comment
Input						
Voltage	VIN	90		265	VAC	2 Wire – no P.E.
Frequency	f _{LINE}	47	50/60	64	Hz	
No-load input power	P _{NL}			100	mW	230 VAC
Output						
Output Voltage	V _{OUT}	18.05	19	19.95	V	±5%
Output Ripple Voltage				150	mVpp	20 MHz Bandwidth, $V_{IN(MIN)}$, $I_{OUT(MAX)}$
Output Current	I _{OUT}	0.0		2.37	Α	
Total Output Power						
Continuous Output Power	Pout	0		45	W	
Efficiency						
Full Load Efficiency	η	86			%	90 VAC and Full Load
Environmental						
Conducted EMI		Meets EN55022B				6 dB Margin
Safety		IE	Designed to meet IEC950, UL1950 Class II			
	DM	3			kV	1.2/50 μs surge, IEC 61000-4-5, Series
Surge	СМ	3				Impedance: Differential Mode: 2 Ω Common Mode: 12 Ω
	Air	-16.5		16.5	kV	Air Discharge onto Output Connector
ESD	Contact	-8.8		8.8	kV	Contact Discharge onto Output Connector
Ambient Temperature	T _{AMB}	0		40	О°	Free Convection, Sea Level

3 Schematic

4 Circuit Description

The circuit shown in Figure 3 utilizes the LNK6777E device in a 19 V, 45 W isolated flyback power supply.

4.1 Input Rectification and Filtering

Fuse F1 provides overcurrent protection to the circuit and isolates it from the AC supply in the event of a fault. Diode bridge BR1 rectifies the AC input. Capacitor C6, in conjunction with inductors L1 and L2, constitute the EMI filter for attenuating both common mode and differential mode conducted noise.

Resistors R11, R12 and R13 are provided to discharge the EMI filter capacitors after line voltage has been removed from the circuit.

NTC thermistor RT1 limits inrush current of the supply when line voltage is first applied.

Metal oxide varistor (MOV) RV1 protects the circuit during line surge events by effectively clamping the input voltage seen by the power supply.

4.2 LinkSwitch-HP Primary

The schematic in Figure 3 depicts a 19 V, 45 W LinkSwitch-HP based flyback converter implemented using the LNK6777E. The LNK6777E device (U1) integrates an oscillator, an error amplifier and multi-mode control circuit, start-up and protection circuitry and a high-voltage power MOSFET all in one monolithic IC.

One side of the power transformer is connected to the high-voltage bus and the other side is connected to the DRAIN (D) pin of U1. At the start of a switching cycle, the controller turns the power MOSFET on and current ramps up in the primary winding, which stores energy in the core of the transformer. When that current reaches the limit threshold which is set by the output of internal error amplifier (COMPENSATION (CP) pin voltage), the controller turns the power MOSFET off. Due to the phasing of the transformer windings and the orientation of the output diode, the stored energy then induces a voltage across the secondary winding, which forward biases the output diode, and the stored energy is delivered to the output capacitors.

Capacitor C7 (470 nF) connected to the BYPASS (BP) pin sets overvoltage protection (OVP) and over-temperature protection (OTP) to latching and lost regulation protection to automatic restart attempts (auto-restart) after a given off-period (typ. 1500 ms).

4.3 Primary RCD Clamp

Diode D1, C3, R1, R2, R3 and R5 form a RCD snubber that is used to limit the voltage stress across the LinkSwitch-HP. Peak drain voltage is therefore limited to typically less than 640 V at 265 VAC – providing significant margin to the 725 V drain voltage rating (BV_{DSS}).

4.4 Output Rectification

Output rectification of the 19 V output is provided by diode D4 and filtering is provided by capacitor C15, C18. The snubber formed by R19, R20 and C12 provides high frequency filtering for improved EMI.

4.5 External Current Limit Setting-

The maximum cycle-by-cycle current limit is set by the resistor R4 connected to the PROGRAM (PD) pin. A 23.2 k Ω resistor in the design sets the maximum current limit to 60% of the LNK6777E's default current limit.

4.6 Feedback and Compensation Network

Secondary side regulation was used for this design instead of primary side regulation to achieve both low no load consumption (<100 mW) and transient response requirements (\pm 5%).

The basic approach is to use an optocoupler to directly drive the CP pin of the LinkSwitch-HP IC. The CP voltage can be considered to be the internal error voltage and therefore changing the error voltage directly changes the power processed by the device (primary current and switching frequency).

4.6.1 Primary Side Regulation

In a standard LinkSwitch-HP design the output voltage is determined through the coupling between the bias and secondary windings, with the voltage on the bias winding being regulated.

The voltage on the bias winding is sensed via a resistor divider and connected to the FB pin of the IC. The voltage sensed at the FB pin produces a control voltage at the CP pin. This control voltage determines the operating peak primary current and the operating switching frequency. Resistor R7 and capacitors C4 and C5 are used for control loop compensation.

Due to the addition of secondary side feedback the bias winding no longer provides regulation under normal operation. However for the approach to work the bias winding feedback set point must be set above the secondary feedback set point. Therefore the R14 and R15 resistor divider ratio is set such that the FB pin is slightly (~10%) below its 2 V reference voltage when the output voltage is in regulation.

This allows the secondary side feedback to dominate, ie as the output voltage tries to exceed the level set by the secondary side feedback the optocoupler will conduct and the control loop will close.

One side benefit of this is that there are effectively two regulation loops such that if the secondary loop is defeated due to a fault (e.g. open optocoupler), then the power supply will regulate from the primary side at the slightly higher output voltage (~10%).

The primary winding sense cannot be simply removed when using optocoupler feedback as the divider R14 and R15 is used to indirectly monitor the bus voltage during the integrated power MOSFET on-time to provide line under-voltage and over-voltage functions.

4.6.2 Secondary Side Regulation

The output voltage is controlled using shunt regulator U4. Resistors R24 and R25 sense the output voltage, forming a resistor divider connected to the reference input of IC U4. Changes in the output voltage and hence the voltage at the reference input of U4 results in changes in the cathode voltage of IC U4 and therefore optocoupler U2 LED current.

This changes the voltage on CP pin of U1 (via Q2) and therefore the operating peak primary current and the operating switching frequency to maintain output voltage regulation.

Diode D2 is used to clamp the voltage from optocoupler emitter to ground in order to avoid overdriving of Q2 (maximum voltage on the optocoupler emitter will be the V_F of D2 plus the V_{BE} of Q1).

If D2 is not used, during a load transient from full load to no load (output voltage exceeds the regulation set point) U2B transistor is saturated and voltage at the U2B emitter rises to >6 V. This then over drives Q2 causing the voltage at Q2 emitter higher level and in turn raises the CP pin voltage. Raising the CP pin causes increased power delivery and the output voltage goes further out of regulation, essentially latching the condition.

Resistor R6 and R9 sets a gain of 1 along with Q2 and Q1 and voltage across R6 will be approximately 300 mV at no-load. This is well below the minimum voltage on the CP pin at no load.

Resistors R21, R22, R23, and capacitors C14, C17 are used for control loop compensation.

The primary side of the optocoupler feedback circuit consists of Q1, Q2, R6, R7, R8, R9, R10, D2, C4, C5 and U2.

Since the FB pin divider network is set to deliver higher output voltage than the actual regulated output (set by optocoupler feedback) a lost regulation fault is falsely detected by the IC (the FB pin voltage never reaches the 2 V regulation threshold).

To prevent the false fault detection causing the part to enter auto-restart a workaround is implemented using Q1. Current only flows in the optocoupler when the control loop is closed and the output is in regulation. The opto current is therefore used to drive the base of Q1, which pulls down the PD pin of the LinkSwitch-HP device, inhibiting the part from entering auto-restart (by preventing the 128 cycles of the PD pin between VPD(DL) (0.5 V_{TYP}) and VPD(DU) (1.2 V_{TYP}))

This arrangement still allows the programming functions on the PD pin to be detected at startup as Q1 is off and also allows auto-restart in the event of output overload or short circuit as again Q1 will be off.

4.7 Optional Parts

The schematic below shows locations of optional parts not populated by default.

U3 – CAPZero

A provision was left on the PCB for the use of a CAPZero IC. If used R11 would be omitted. The use of CAPZero reduces the no-load input power by \sim 25 mW (230 VAC) by only connecting R12 and R13 in circuit when the AC is removed.

C10 – High Frequency Decoupling Capacitor

A provision was left for a high frequency decoupling capacitor. This helps to reduce differential mode EMI by providing a lower impedance source for the switching currents compared to the electrolytic input capacitors.

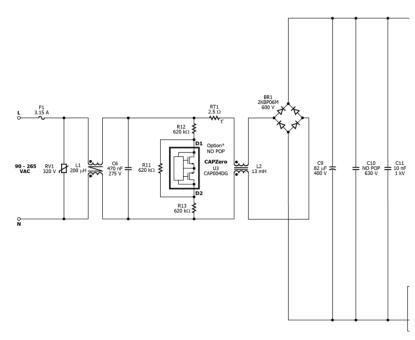


Figure 4 – Schematic Showing Optional Components U3 and C10.

5 PCB Layout

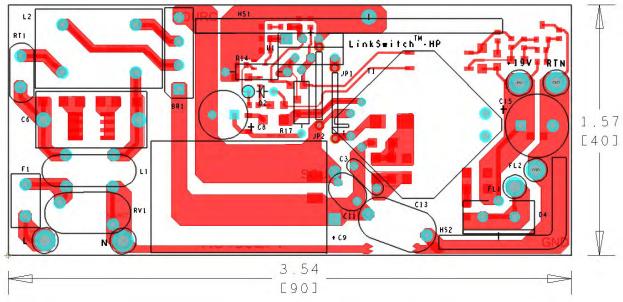


Figure 5 – PCB Top Side.

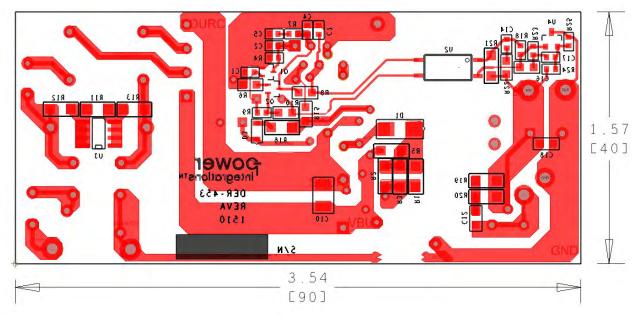


Figure 6 – PCB Bottom Side.

6 Bill of Materials

Item	Qty	Ref Des	Description	Mfg Part Number	Mfg		
1	1	+19V	Test Point, RED, THRU-HOLE MOUNT	5010	Keystone		
2	1	BR1	600 V, 2 A, Bridge Rectifier, Glass Passivated	2KBP06M-E4/51	Vishay		
3	2	C1 C2	33 nF 50 V, Ceramic, X7R, 0603	GRM188R71H333KA61D	Murata		
4	1	C3	470 pF, 1 kV, Disc Ceramic	NCD471K1KVY5FF	NIC		
5	1	C4	100 pF 50 V, Ceramic, NPO, 0603	CC0603JRNPO9BN101	Yageo		
6	1	C5	1 μF, 16 V, Ceramic, X5R, 0603	GRM188R61C105KA93D	Murata		
7	1	C6	470 nF, 275 VAC, Film, X2	80-R46KI347050P1M	Kemet		
8	1	C7	470 nF, 50 V, Ceramic, X7R, 0603	UMK107B7474KA-TR	Taiyo Yuden		
9	1	C8	220 μ F, 25 V, Electrolytic, Gen. Purpose, (8 x 11.5)	EKMG250ELL221MHB5D	Nippon Chemi-Con		
10	1	C9	82 μF, 400 V, Electrolytic, (18 x 25)	20-00831-00	Nichicon		
10	1	C11	10 nF, 1 kV, Disc Ceramic, X7R	SV01AC103KAR	AVX		
12	1	C12	470 pF, 250 V, Ceramic, GCM, 0805	GCM21A7U2E471JX01D	Murata		
12	1	C12	470 pF, 250 VAC, Film, X1Y1	CD95-B2GA471KYNS	TDK		
13	1	C14	15 nF 50 V, Ceramic, X7R, 0603	CL10B153KB8NFNC	Samsung		
15	1	C14	680 μF, 25 V, Electrolytic, Very Low ESR, 23	EKZE250ELL681MJ20S	Nippon Chemi-Con		
17	1	C17	$m\Omega$, (10 x 20)		Vaga		
16 17	1 1	C17 C18	47 nF 25 V, Ceramic, X7R, 0603 1 μF, 50 V, Ceramic, X7R, 0805	CC0603KRX7R8BB473 C2012X7R1H105M	Yago TDK		
18	1	D1	1000 V, 1 A, DO-214AC	GS1M-LTP	Micro Commercial		
19	1	D2	75 V, 300 mA, Fast Switching, DO-35	1N4148TR	Vishay		
20	1	D3	250 V, 0.2 A, Fast Switching, 50 ns, SOD-323	BAV21WS-7-F	Diodes, Inc.		
21	1	D4	120 V, 10 A, Schottky, TO-220AB	V20120C-E3/4W	Vishay		
22	1	ESIPCLIP M4 METAL1	Heat sink Hardware, Edge Clip, 20.76 mm L x 8 mm W x 0.015 mm Thk	NP975864	Aavid Thermalloy		
23	1	F1	3.15 A, 250 V, Slow, RST	507-1181	Belfuse		
23	2	FL1 FL2	PCB Terminal Hole, 18 AWG	N/A	N/A		
25	2	GREASE1 GREASE2	Thermal Grease, Silicone, 5 oz Tube	CT40-5	ITW Chemtronics		
26	1	HS1	FAB, HEAT SINK, eSIP, DER453		Custom		
20	1	HS2	FAB, HEAT SINK, DIODE, DER453		Custom		
28	2	JP1 JP2	Wire Jumper, Insulated, 24 AWG, 0.5 in	C2003A-12-02	Gen Cable		
20	2	L RTN	Test Point, BLK, THRU-HOLE MOUNT	5011	Keystone		
30	1	L K I N	200 μH, Common Mode Choke	3011	Reystone		
30	1	L1 L2	13 mH, Common Mode Choke				
32	1			5014	Kovetopo		
32	1	N NUT1	Test Point, YEL, THRU-HOLE MOUNT Nut, Hex, Kep 4-40, S ZN Cr3 plateing RoHS	4CKNTZR	Keystone Any RoHS Compliant		
					Mfg.		
34	2	Q1 Q2	NPN, Small Signal BJT, 40 V, 0.2 A, SOT-323	MMST3904-7-F	Diodes, Inc.		
35	3	R1 R2 R3	620 Ω, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ621V	Panasonic		
36	1	R4	23.2 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF2322V	Panasonic		
37	1	R5	750 kΩ, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ754V	Panasonic		
38	1	R6	1.00 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1001V	Panasonic		
39	1	R7	12 kΩ, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ123V	Panasonic		
40	1	R8	24.9 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF2492V	Panasonic		
41	1	R9	1 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF1001V	Panasonic		
42	2	R10 R22	1 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ102V	Panasonic		
43	3	R11 R12 R13	620 k $\Omega,$ 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ624V	Panasonic		
44	1	R14	7.5 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-7K50	Yageo		
45	1	R15	35.7 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF3572V	Panasonic		
46	1	R16	0 Ω, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEY0R00V	Panasonic		
47	1	R17	1.2 k Ω , 5%, 1/4 W, Carbon Film	CFR-25JB-1K2	Yageo		

48	1	R18	3.48 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF3481V	Panasonic
49	2	R19 R20	22 Ω, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ220V	Panasonic
50	1	R21	2.4 kΩ, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ242V	Panasonic
51	1	R23	200 kΩ, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ204V	Panasonic
52	1	R24	162 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF1623V	Panasonic
53	1	R25	11 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF1102V	Panasonic
54	1	RT1	NTC Thermistor, 2.5 Ohms, 3 A	SL08 2R503	Ametherm
55	1	RV1	320 V, 48 J, 10 mm, RADIAL	V320LA10P	Littlefuse
56	1	SCREW1	SCREW MACHINE PHIL 4-40X 3/16 SS	67413609	MSC Industrial
57	1	SCREW2	SCREW MACHINE PHIL Flat head 4-40 X 5/16 SS		Any RoHS Compliant Mfg.
58	1	T1	Bobbin, RM8, Vertical, 12 pins	RM8/12/1	Schwartzpunkt
59	1	U1	LinkSwitch-HP, Esip-7C	LNK6777E	Power Integrations
60	1	U2	OPTOISOLATOR, 5 KV, TRANSISTOR, 4-SOP	TCLT1007	Vishay
61	1	U4	1.24 V Shunt Regulator IC, 1%, -40 to 85 C, SOT23-3	LMV431AIMF	National Semi
62	1	WASHER1	WASHER FLAT #4 Zinc, OD 0.219, ID 0.125, Thk 0.032,Yellow Chromate Finish	5205820-2	Тусо

7 Transformer Design Spreadsheet

ACDC_LinkSwitch-			-	
HP_101714;				
Rev.2.0; Copyright	INPUT	OUTPUT	UNIT	ACDC_LinkSwitchHP_101714 Rev 2-0.xls: LinkSwitch-HP Flyback
Power	1111 01	001101	UNIT	Continuous/Discontinuous Transformer Design Spreadsheet
Integrations 2014				
ENTER APPLICATIO	N VARTARI I	ES I		
VACMIN	90	90	V	Minimum AC Input Voltage
VACMAX	265	265	v	Maximum AC Input Voltage
fl	200	50	Hz	AC Mains Frequency
VO	19	19	V	Output Voltage (main)
PO	45	45	Ŵ	Load Power
n	0.90	0.90		Efficiency Estimate
7	0.70	0.50		Loss Allocation Factor
VB	10	10	V	Bias Voltage
tC	10	3	ms	Bridge Rectifier Conduction Time Estimate
CIN	82	82	uF	Input Filter Capacitor
Package	E/V	E/V	ui	E and V Package Selected
Enclosure	Open Frame	Open Frame		Open Frame type enclosure
Heatsink	Metal			
		Metal		Metallic heatsink thermally connected to the exposed metal on the E-package
ENTER LinkSwitch-				
LinkSwitch-HP	LNK6777E	LNK6777E		Manual Device Selection
		2.418	A	Minimum Current limit
ILIMITMAX		2.782	A	Maximum current limit
ILIMITMIN_EXT		1.451	A	External Minimum Current limit
ILIMITMAX_EXT		1.669	A	External Maximum current limit
кі	0.6	0.600		Current limit reduction factor
Rpd		23.20	k-ohm	Program delay Resistor
Cpd		33.00	nF	Program delay Capacitor
Total programmed delay		0.18	sec	Total program delay
fS		132	kHz	LinkSwitch-HP Switching Frequency
fSmin		120	kHz	LinkSwitch-HP Minimum Switching Frequency
fSmax		136	kHz	LinkSwitch-HP Maximum Switching Frequency
КР	0.53	0.53		Ripple to Peak Current Ratio (0.4 < KP < 6.0)
VOR	130.00	130.00	V	Reflected Output Voltage
Voltage Sense				
VUVON		96.30	V	Undervoltage turn on
VUVOFF		39.25	V	Undervoltage turn off
VOV		433.44	V	Overvoltage threshold
FMAX_FULL_LOAD		126.72	kHz	Maximum switching frequency at full load
FMIN_FULL_LOAD		111.81	kHz	Minimum switching frequency at full load
TSAMPLE_FULL_LOAD		2.92	us	Minimum available Diode conduction time at full load. This should be greater than 2.5 us
TSAMPLE_LIGHT_LOAD		1.83	us	Minimum available Diode conduction time at light load. This should be greater than 1.4 us
VDS		1.71	V	LinkSwitch-HP on-state Drain to Source Voltage.
VD	0.70	0.70	V	Output Winding Diode Forward Voltage Drop
VDB		0.70	V	Bias Winding Diode Forward Voltage Drop
FEEDBACK SENSING	G SECTION			
RFB1		30.90	k-ohms	Feedback divider upper resistor
RFB2		7.15	k-ohms	Feedback divider lowerr resistor
ENTER TRANSFORM	IER CORE/C			
Select Core Size	RM8/I	RM8/I		Manual Core Selected
Core	1.10/1	RM8/I		Selected Core
Custom Core				Enter name of custom core is applicable
AE		0.63	cm^2	Core Effective Cross Sectional Area
LE		3.84	cm	Core Effective Path Length
AL				Ungapped Core Effective Inductance
		3000	nH/T^2	
BW		8.6	mm	Bobbin Physical Winding Width

М		0.00	mm	Safety Margin Width (Half the Primary to Secondary Creepage Distance)
	2	2		Number of Primary Layers
NS	8	8		Number of Secondary Turns
DC INPUT VOLTAG				
		88	V	Minimum DC Input Voltage
VMAX		375	v	Maximum DC Input Voltage
CURRENT WAVEFO	RM SHAPE		2S	
DMAX		0.60		Maximum Duty Cycle
IAVG		0.57	A	Average Primary Current
IP		1.29	A	Peak Primary Current
IR		0.68	А	Primary Ripple Current
IRMS		0.75	Α	Primary RMS Current
TRANSFORMER PR	IMARY DES	GN PARAM	ETERS	
LP_TYP		690	uH	Typical Primary Inductance
LP_TOL	5	5	%	Primary inductance Tolerance
NP		53		Primary Winding Number of Turns
NB		4		Bias Winding Number of Turns
ALG		247	nH/T^2	Gapped Core Effective Inductance
BM		2675	Gauss	Maximum Flux Density at PO, VMIN (BM<3100)
ВР		3634	Gauss	Peak Flux Density (BP<3700)
BAC		709	Gauss	AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)
ur		1455		Relative Permeability of Ungapped Core
LG	+	0.29	mm	Gap Length (Lg > 0.1 mm)
BWE	0.40	17.2	mm	Effective Bobbin Width
OD INS	0.40	0.40	mm	Maximum Primary Wire Diameter including insulation Estimated Total Insulation Thickness (= 2 * film thickness)
DIA		0.08	mm mm	Bare conductor diameter
AWG		28	AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)
CM		161	Cmils	Bare conductor effective area in circular mils
СМА		215		Primary Winding Current Capacity (200 < CMA < 500)
Lumped parameters		1	1	
ISP		8.51	А	Peak Secondary Current
ISRMS		4.03	А	Secondary RMS Current
10		2.37	А	Power Supply Output Current
IRIPPLE		3.26	Α	Output Capacitor RMS Ripple Current
CMS		806	Cmils	Secondary Bare Conductor minimum circular mils
AWGS		21	AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)
DIAS		0.73	mm	Secondary Minimum Bare Conductor Diameter
ODS		1.08	mm	Secondary Maximum Outside Diameter for Triple Insulated Wire
INSS		0.17	mm	Maximum Secondary Insulation Wall Thickness
VOLTAGE STRESS	PARAMETER	1	1	
VDRAIN		668		Peak voltage acoss drain to source of Linkswitch-HP
PIVS	+	76	V V	Output Rectifier Maximum Peak Inverse Voltage
PIVB 1st output		41	V	Bias Rectifier Maximum Peak Inverse Voltage
1st output VO1		19.00	V	Output Voltage
101		2.37	A	Output Voltage Output DC Current
PO1		45.00	W	Output De current Output Power
VD1		0.7	V	Output Fower Output Diode Forward Voltage Drop
NS1		8.00	-	Output Winding Number of Turns
ISRMS1		4.031	Α	Output Winding RMS Current
IRIPPLE1	T	3.26	А	Output Capacitor RMS Ripple Current
PIVS1		76	V	Output Rectifier Maximum Peak Inverse Voltage
CMS1		806	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS1		21	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS1		0.73	mm	Minimum Bare Conductor Diameter
ODS1		1.08	mm	Maximum Outside Diameter for Triple Insulated Wire
2nd output		1	1	
VO2		0.00	V	Output Voltage
102		0.00	A	Output DC Current

PO2		0.00	W	Output Power
VD2		0.7	V	Output Diode Forward Voltage Drop
NS2		0.28		Output Winding Number of Turns
ISRMS2		0.000	А	Output Winding RMS Current
IRIPPLE2		0.00	А	Output Capacitor RMS Ripple Current
PIVS2		2	V	Output Rectifier Maximum Peak Inverse Voltage
CMS2		0	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS2		N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS2		N/A	mm	Minimum Bare Conductor Diameter
ODS2		N/A	mm	Maximum Outside Diameter for Triple Insulated Wire
3rd output				
VO3		0.00	V	Output Voltage
103		0.00	А	Output DC Current
PO3		0.00	W	Output Power
VD3		0.7	V	Output Diode Forward Voltage Drop
NS3		0.28		Output Winding Number of Turns
ISRMS3		0.000	А	Output Winding RMS Current
IRIPPLE3		0.00	А	Output Capacitor RMS Ripple Current
PIVS3		2	V	Output Rectifier Maximum Peak Inverse Voltage
CMS3		0	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS3		N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS3		N/A	mm	Minimum Bare Conductor Diameter
ODS3		N/A	mm	Maximum Outside Diameter for Triple Insulated Wire
Total power		45	W	Total Power for Multi-output section
Negative Output	N/A	N/A		If negative output exists enter Output number; eg: If VO2 is negative output, select 2

8 Magnetics

8.1 Transformer T1 Specification

8.1.1 Electrical Diagram

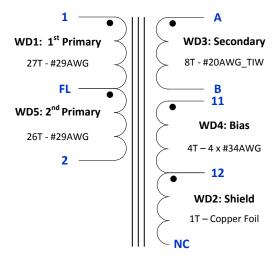
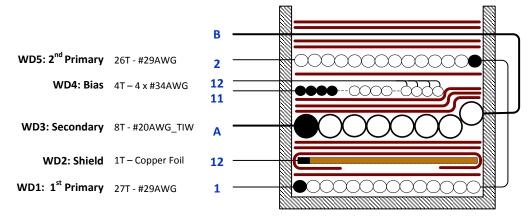
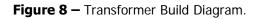


Figure 7 – Transformer Electrical Diagram.

8.1.2 Electrical Specifications


Electrical Strength	3000 VAC	
Primary Inductance	Pins 1-2, all others open, measured at 100 kHz, 0.4 $V_{\text{RMS}}.$	690 μH, ±5%
Resonant Frequency	Pins 1-2, all others open.	1700 kHz (Min.)
Primary Leakage	Pins 1-2, with A-B shorted, measured at 100 KHz, 0.4 V_{RMS}	7.0 μH (Max.)


8.1.3 Materials

Item	Description								
[1]	Core: RM8, TDK-PC95, gapped for ALG of 285nH/T ² .								
[2]	Bobbin: RM8, Vertical, 12 pins(6/6), TDK; or equivalent.								
[3]	Clip: RM8: Allstar Magnetic, PN: CLI/P-RM8/I.								
[4]	Magnet wire: #29 AWG Double Coated, Solderable.								
[5]	Magnet wire: #34 AWG Double Coated, Solderable.								
[6]	Magnet wire: #20 AWG Triple Insulated Wire.								
[7]	Copper Shield: Use copper foil 1 mil thick, 8.5 mm wide, 35.0 mm long, and covered with tape, see Figure 3 below and illustration below for constructing.								
[8]	Tape: 3M 1298 Polyester Film, 1 mil thick, 9.0 mm wide.								
[9]	Bus bare wire: #26 AWG, Belden Electronics Division.								
[10]	Varnish.								

8.1.4 Transformer Build Diagram

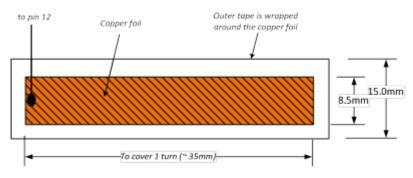
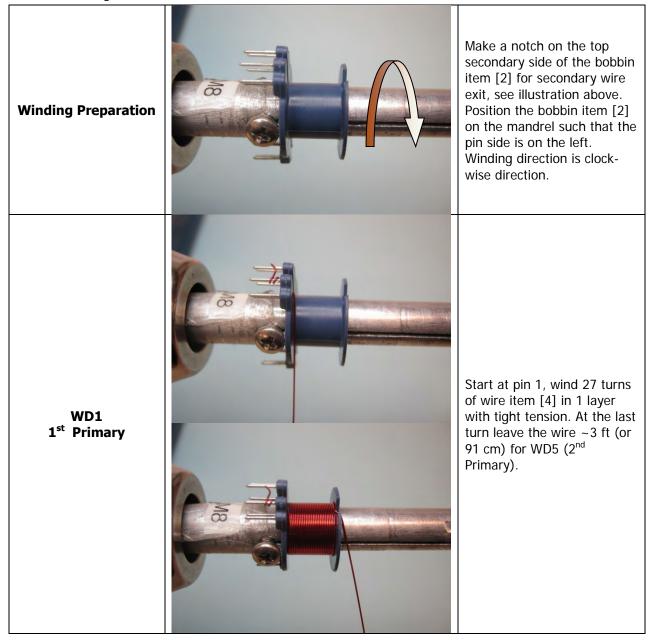
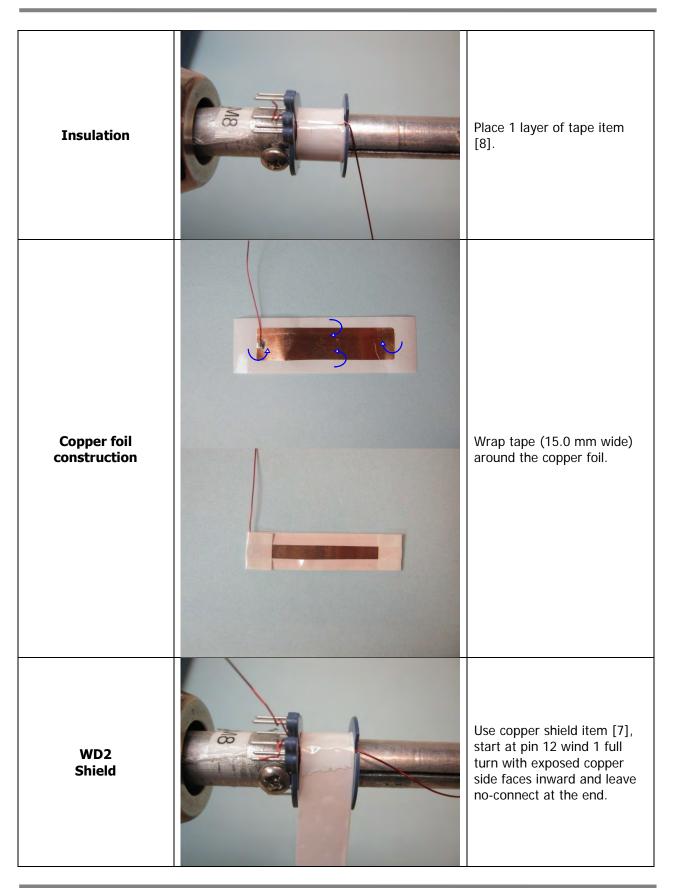


Figure 9 – Copper Shield.

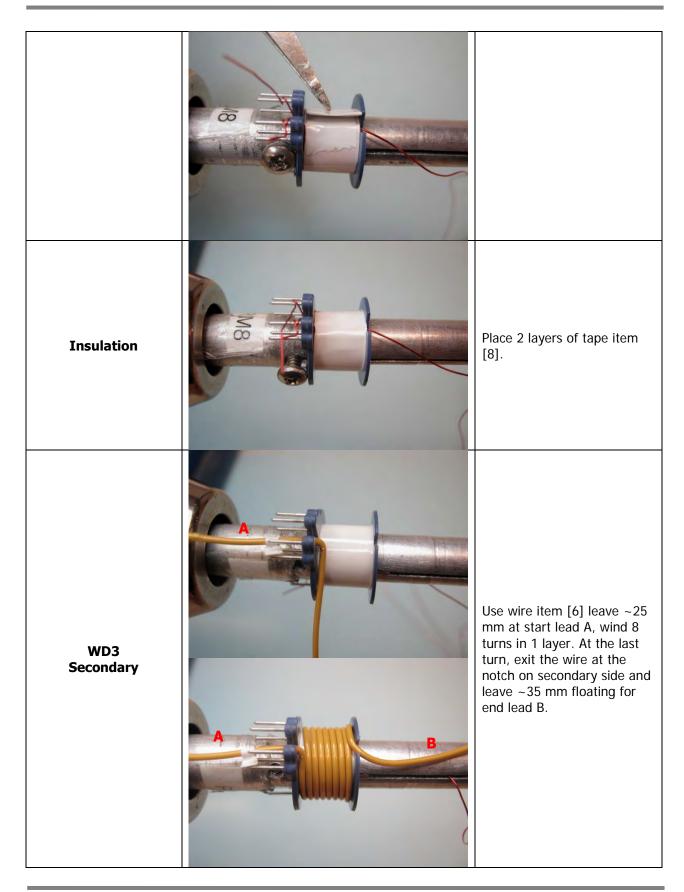
Figure 10 – Bobbin Notch.

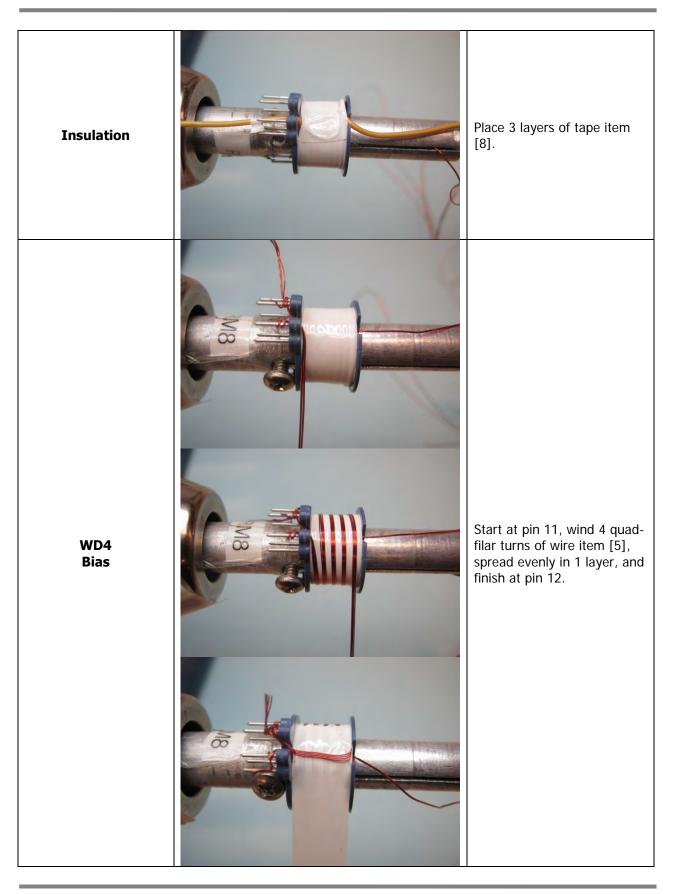


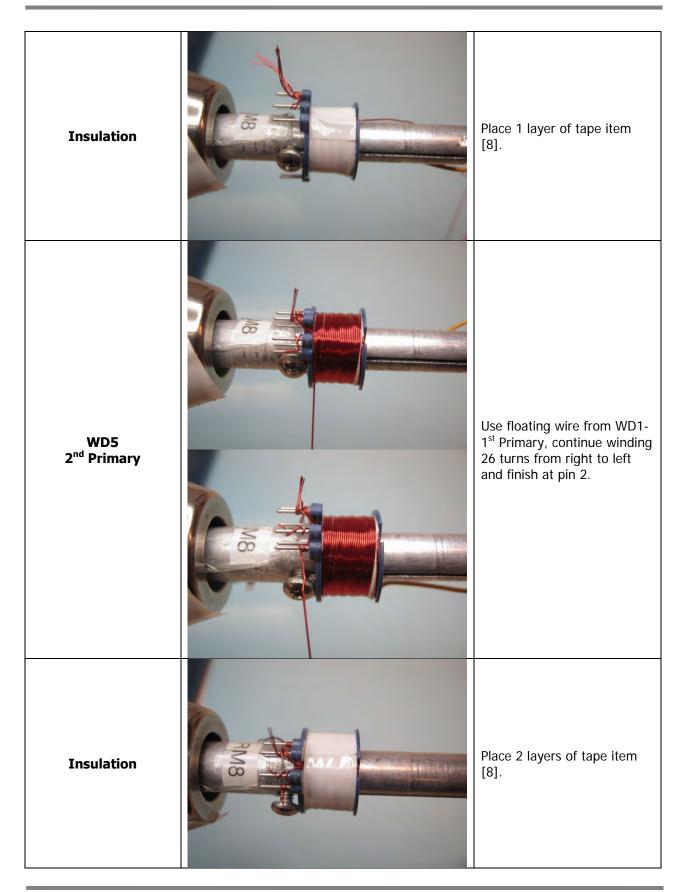
5						
Winding Preparation	Make a notch on the top secondary side of the bobbin item [2] for secondary wire exit, see illustration above. Position the bobbin item [2] on the mandrel such that the pin side is on the left. Winding direction is clock-wise direction.					
WD1Start at pin 1, wind 27 turns of wire item [4] in 1 layer with tight tens1st Primaryturn leave the wire ~ 3ft (or 91cm) for WD5 (2 nd Primary).						
Insulation	Place 1 layer of tape item [8].					
WD2 Shield	Use copper shield item [7], start at pin 12 wind 1 full turn with exposed copper side faces inward and leave no-connect at the end.					
Insulation	Place 2 layers of tape item [8].					
WD3 Secondary	Use wire item [6] leave \sim 25 mm at start lead A, wind 8 turns in 1 layer. At the last turn, exit the wire at the notch on secondary side and leave \sim 35 mm floating for end lead B.					
Insulation	Place 3 layers of tape item [8].					
WD4 Bias	Start at pin 11, wind 4 quad-filar turns of wire item [5], spread evenly in 1 layer, and finish at pin 12.					
Insulation	Place1 layer of tape item [8].					
WD5 2 nd Primary	Use floating wire from WD1-1 st Primary, continue winding 26 turns from right to left and finish at pin 2.					
Insulation	Place 2 layers of tape item [8].					
Finish	Bring the wire floating from WD3- secondary to the left and end with B. Place 2 layers of tape item [8] for insulation and secure all windings. Gap core halves with designated inductance, then assemble and secure clip item [3]. Use wire item [9], solder on 1 side of clip item [3] to connect to pin 12. (see illustration below). Varnish with item [10].					

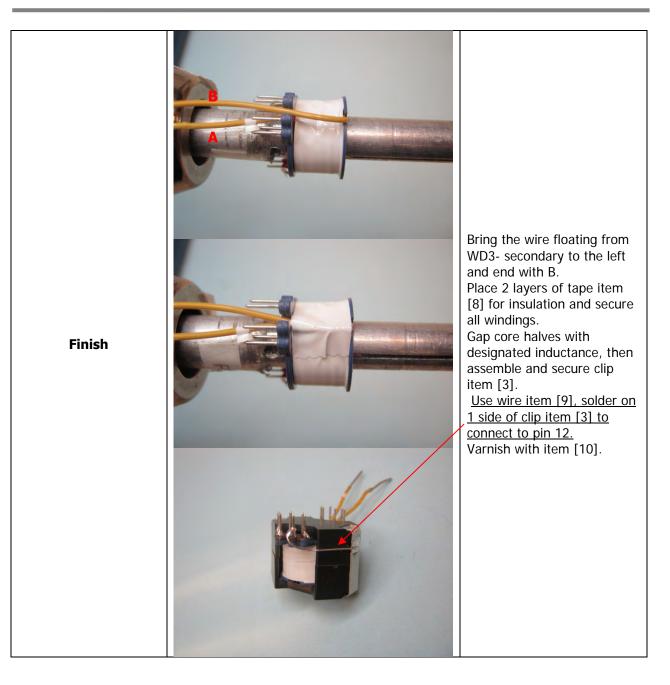

8.1.5 Winding Construction

8.1.6 Winding Illustrations






Page 22 of 66



8.2 Inductor L1 Specification

Electrical Diagram 8.2.1

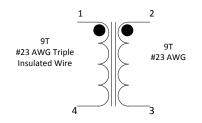
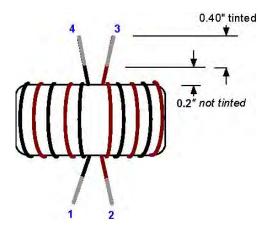


Figure 11 – Inductor Electrical Diagram.


8.2.2 Electrical Specifications

Inductance	Pins 1-4 measured at 100 kHz, 0.4 V _{RMS} .	200 μH ±10%
Resonant Frequency	Pins 1-4, all other windings open.	>300 KHz
Primary Leakage Inductance	Pins 1-4, with 2-3 shorted.	1 μH

8.2.3 Materials

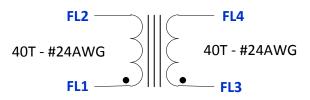
Item	Description
[1]	Core: GL50 T 12X6X4-C, BIPOLAR ELECTRONIC CO., LTD
[2]	Magnet Wire: #23 AWG.
[3]	Triple Insulated wire #23 AWG.

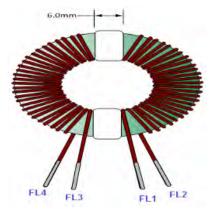
8.2.4 Illustration

Note: Add Teflon sleeving for terminations.

8.3 Inductor L2 Specification

8.3.1 Electrical Diagram



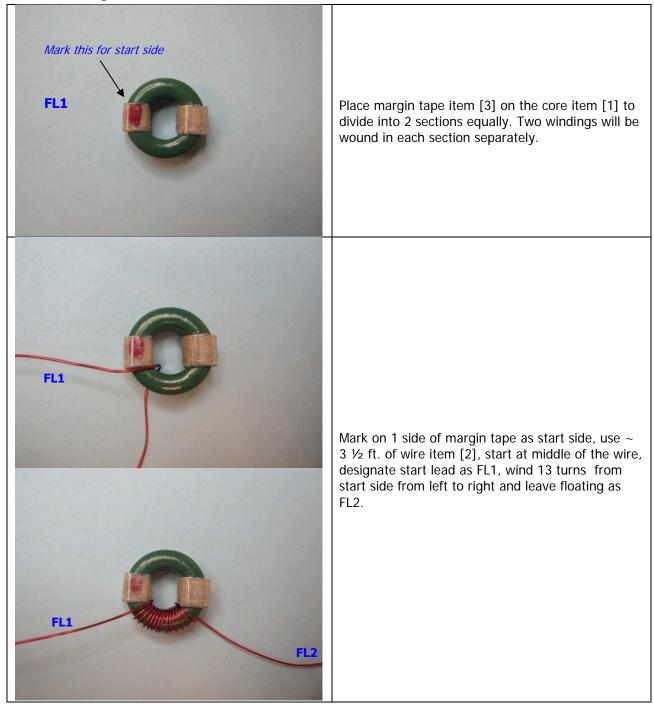

Figure 12 – Inductor Electrical Diagram.

8.3.2 Electrical Specifications

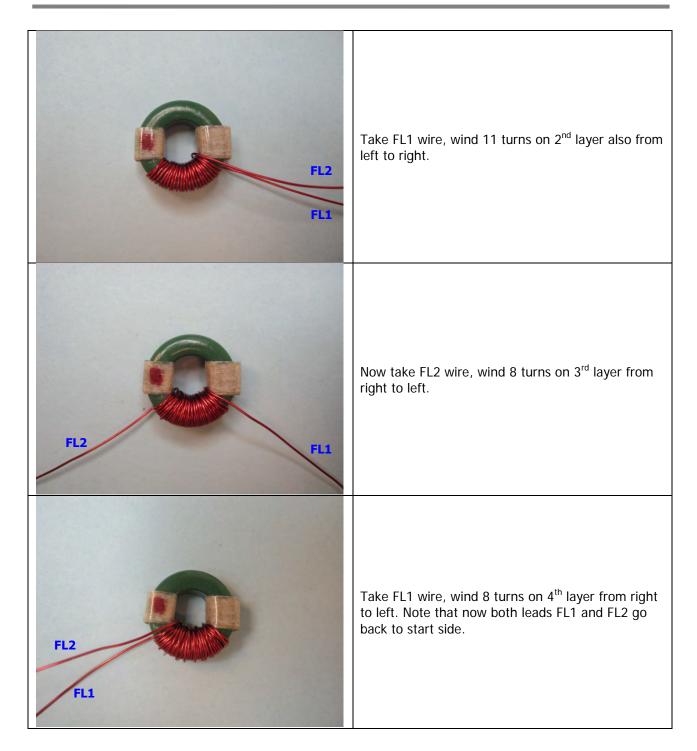
Inductance	Pins FL1-FL2 measured at 100 kHz, 0.4 $V_{\text{RMS}}.$	13 mH ±15%
Primary Leakage Inductance	Pins FL1-FL2, with FL3-FL4 shorted.	62 μH

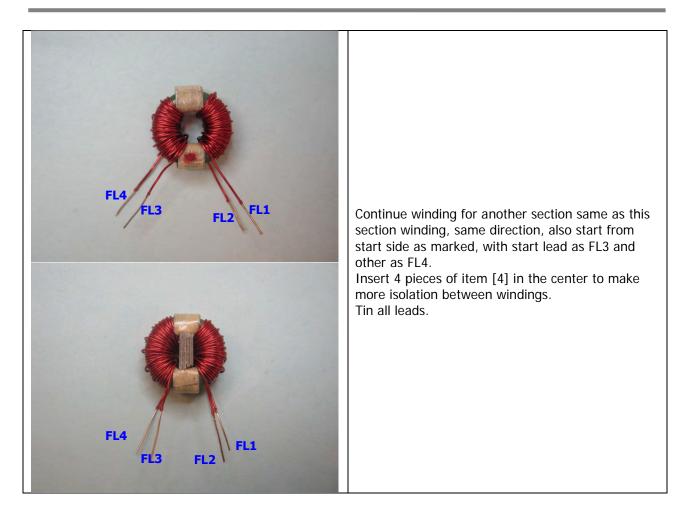
8.3.3 Materials

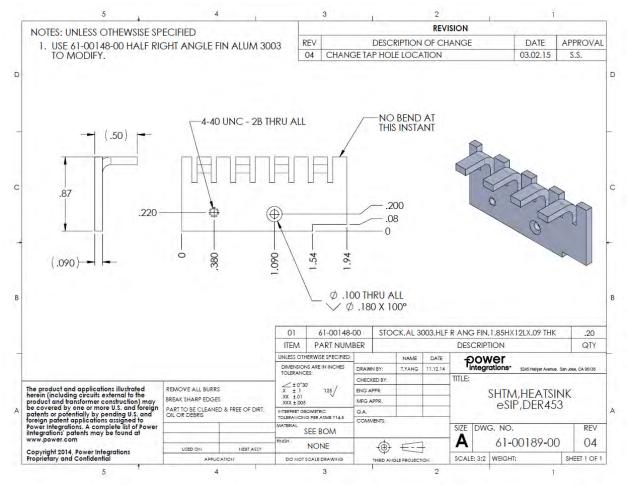
Item	Description
[1]	Core: JL15 (JLW ELECTRONICS (HONG KONG) LIMITED). AL = 8000 nH/N ² . Mfg P/N: T18x10x7C-JL15*. PI P/N: 30-00398-00.
[2]	Magnetic Wire: #24 AWG, double coated.
[3]	Margin tape: 3M44, cream, 6.0 mm wide.
[4]	Divider Fish paper, insulating cotton rag, 0.032" thick, PI #: 66-00042-00. Cut to size 10.0 mm x 9.0 mm.


23-Aug-16

8.3.4 Winding Instructions


- 1. Place margin tape item [3] on the core item [1] to divide into 2 sections equally. Two windings will be wound in each section separately.
- 2. Mark on 1 side of margin tape as start side, use ~ $3 \frac{1}{2}$ ft. of wire item [2], start at middle of the wire, designate start lead as FL1, wind 13 turns from start side from left to right and leave floating as FL2.
- 3. Take FL1 wire, wind 11 turns on 2nd layer also from left to right.
- 4. Now take FL2 wire, wind 8 turns on 3rd layer from right to left.
- 5. Take FL1 wire, wind 8 turns on 4th layer from right to left. Note that now both leads FL1 and FL2 go back to start side.
- 6. Continue winding for another section same as this section winding, same direction, also start from start side as marked, with start lead as FL3 and other as FL4.
- 7. Insert 4 pieces of item [4] in the center to make more isolation between windings.
- 8. Tin all leads.

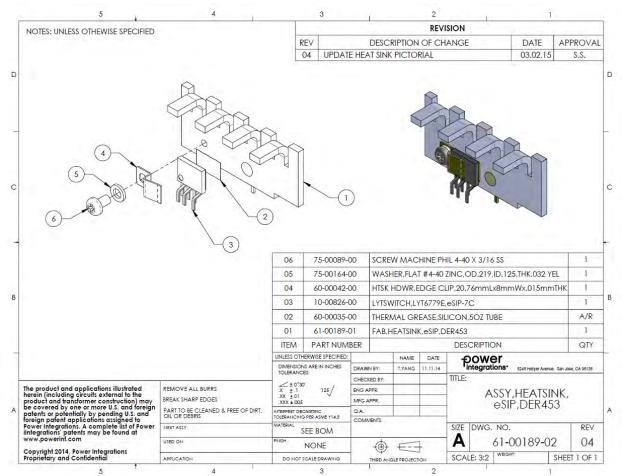

8.3.5 Winding Illustrations



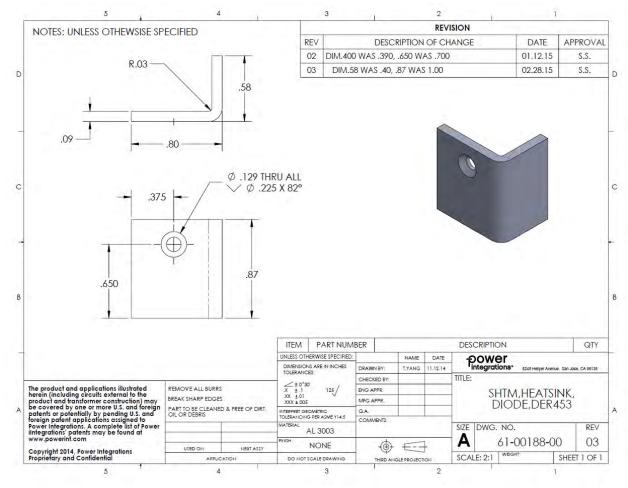
9 Heat Sink Assemblies


9.1 eSIP Heat Sink

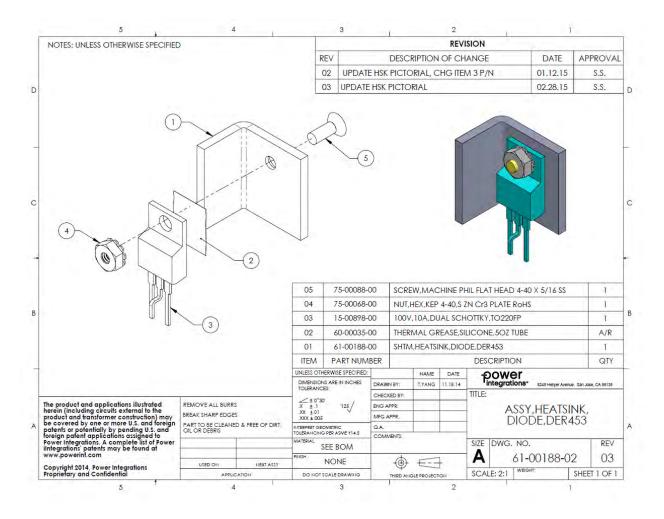
9.1.1 eSIP Heat Sink Fabrication Drawing



9.1.2 eSIP Heat Sink Assembly Drawing



9.1.3 eSIP and Heat Sink Assembly Drawing


9.2 Diode Heat Sink

9.2.1 Diode Heat Sink Fabrication Drawing

9.2.2 Diode and Heat Sink Assembly Drawing

10 Performance Data

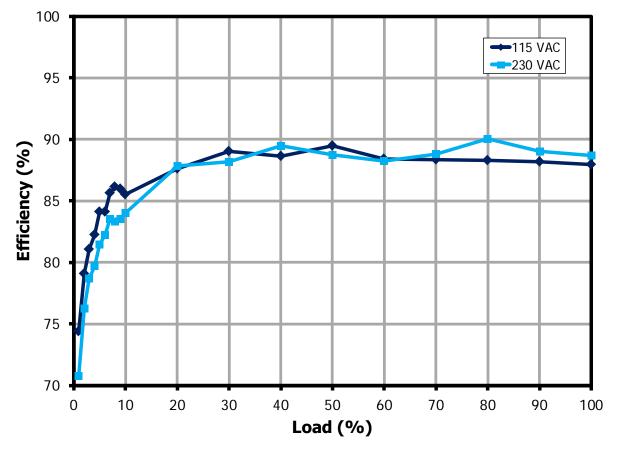
All measurements performed at room temperature and 50/60 Hz line frequency, except where otherwise stated. For all tests, the full load was 2.37 A.

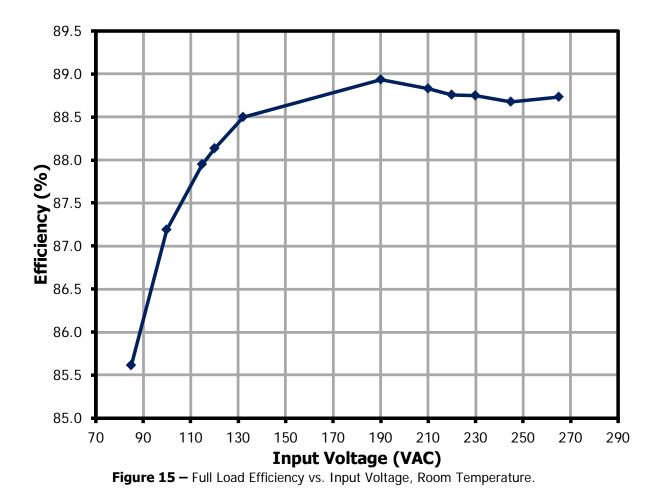


Figure 13- Output Cable, #18 AWG, 1.8 M.

Note: All the performance measurements were done at the end of the cable.

10.1 Active Mode Efficiency




Figure 14 – Active Mode Efficiency, Room Temperature.

	115 VAC				230 VAC				
V _{OUT} (V)	V _{OUT} (V) Ι _{OUT} (A) Ρ _{IN} (W) η (%) ¹		V _{OUT} (V)	I _{OUT} (A)	P _{IN} (W)	η (%)			
19.247	0.5891	12.91	87.8	19.247	0.5888	12.82	88.4		
19.195	1.1801	25.34	89.4	19.193	1.1807	25.52	88.8		
19.144	1.771	38.43	88.2	19.142	1.772	37.78	89.8		
19.091	2.371	51.47	87.9	19.09	2.371	51.01	88.7		
		Avg.	88.3			Avg.	88.9		

Table 1 – Four Point Average Efficiency (25%, 50%, 75% and 100%), Room Temperature.

10.2 Full Load Efficiency

10.3 No-Load/Light Load Input Power

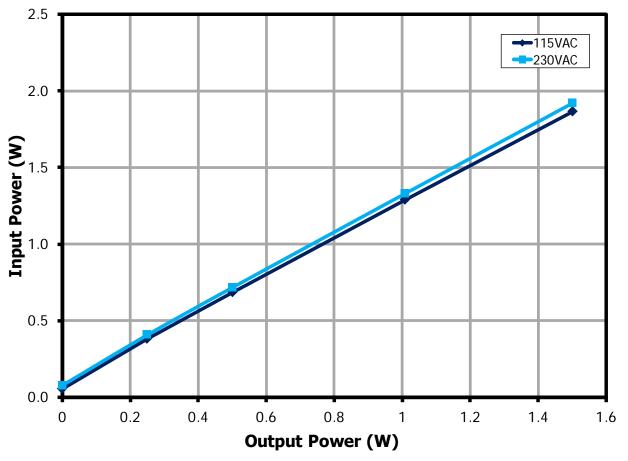
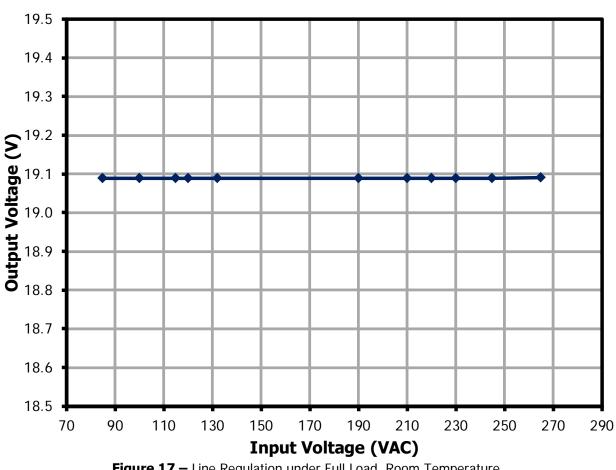
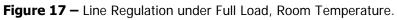
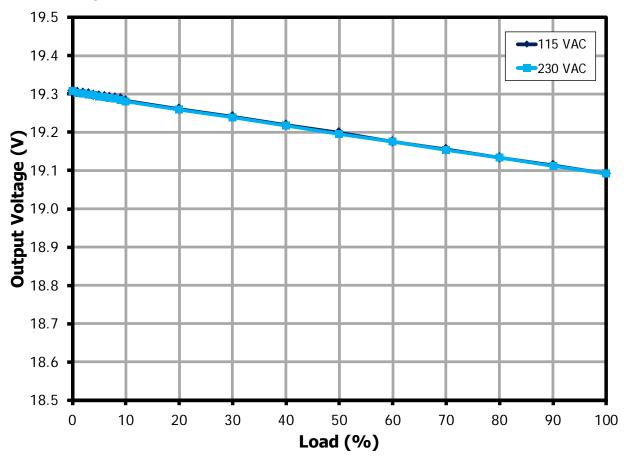



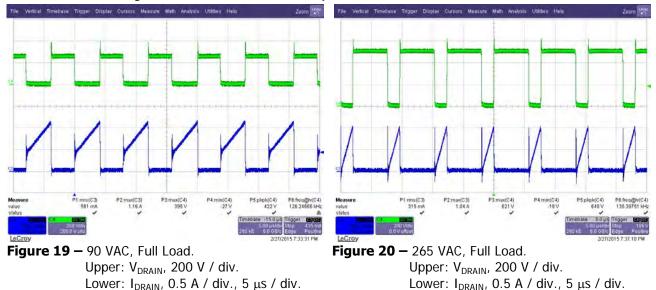
Figure 16 – Input Power vs. Output Power, Room Temperature.



9201


Power Integrations

10.4 Line Regulation



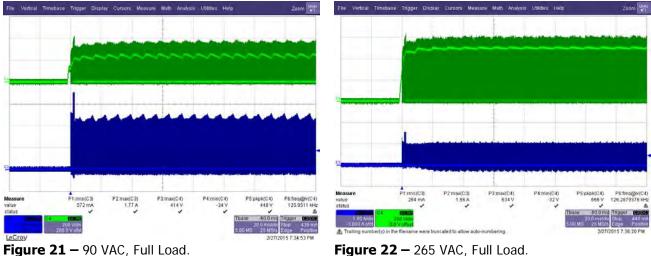
10.5 Load Regulation

Figure 18 – Load Regulation, Room Temperature.

11 Waveforms

11.1 Drain Voltage and Current, Normal Operation

11.2 Drain Voltage and Current Start-up Profile



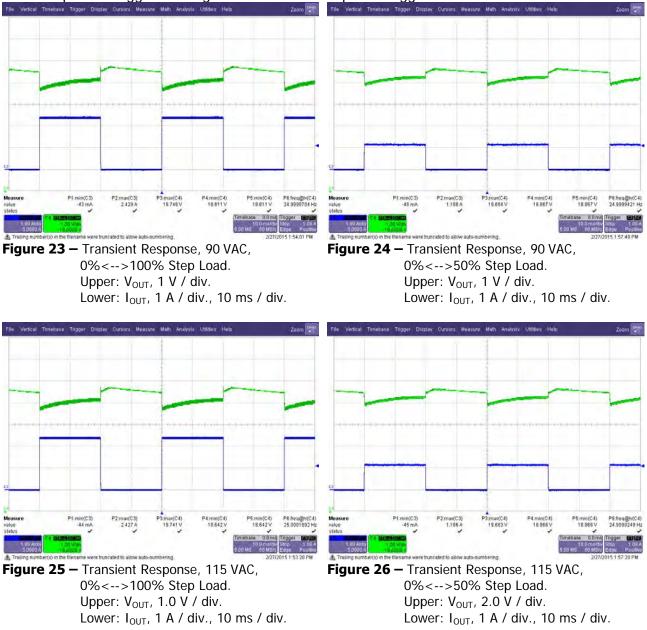
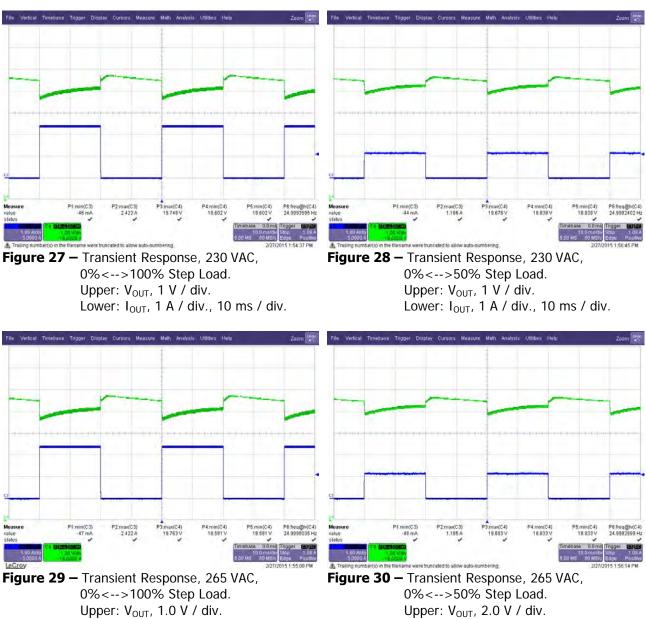


Figure 22 – 265 VAC, Full Load. Upper: V_{DRAIN}, 200 V / div. Lower: I_{DRAIN}, 0.5 A, 2 ms / div.



11.3 Load Transient Response

In the figures shown below, the output was AC coupled to view the load transient response. The oscilloscope was triggered using the load current step as a trigger source.

Lower: I_{OUT}, 1 A / div., 10 ms / div.

Lower: I_{OUT}, 1 A / div., 10 ms / div.

11.4 Output Voltage Start-Up

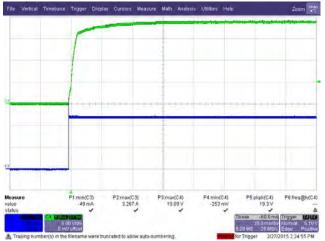


Figure 31 – Output Start-up. 90 VAC, Full Load. Upper: 19 V V_{OUT}, 5 V / div. Lower: 2.37 A I_{OUT}, 1 A / div., 20 ms / div.

Figure 33 – Output Start-up. 115 VAC, Full Load. Upper: 19 V V_{OUT}, 5 V / div. Lower: 2.37 A I_{OUT}, 1 A / div., 20 ms / div.



Figure 32 – Output Start-up. 90 VAC, No-Load. Upper: 19 V V_{OUT}, 5 V / div. Lower: 0 A I_{OUT}, 1 A / div., 20 ms / div.

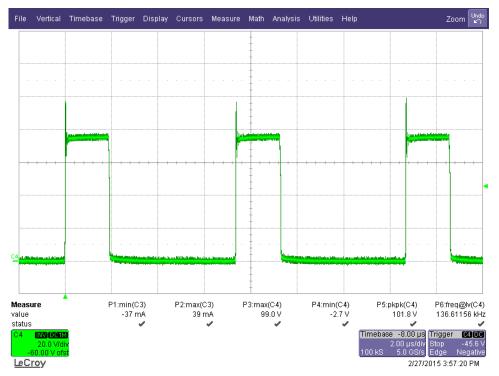


Figure 34 – Output Start-up. 115 VAC, No-Load. Upper: 19 V V_{OUT}, 5 V / div. Lower: 0 A I_{OUT}, 1 A / div., 20 ms / div.

11.5 Output Rectifier Diode Voltage Waveforms

Demonstrates 85% de-rating of 120 V diode rating

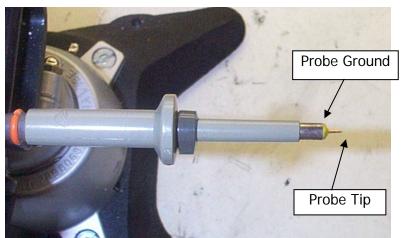
Figure 35 – 19 V Output rectifier diode voltage 100% Load, 265 VAC. Upper: 120 V Output Diode PIV, 20 V / div., 2 μs /div.

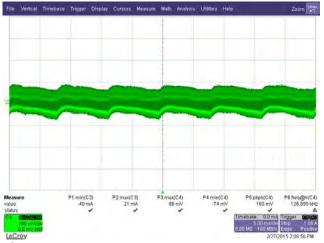
11.6 Output Ripple and Noise Measurements

11.6.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pick-up. Details of the probe modification are provided in the figures below.

The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 μ F / 50 V ceramic type and one (1) 1 μ F / 50 V aluminum electrolytic. *The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).*




Figure 36 – Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed).

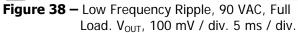


Figure 37 – Oscilloscope Probe with Probe Master 5125BA BNC Adapter (Modified with Wires for Probe Ground for Ripple Measurement, and Two Parallel Decoupling Capacitors Added).

11.6.2 Ripple and Noise Measurement Results

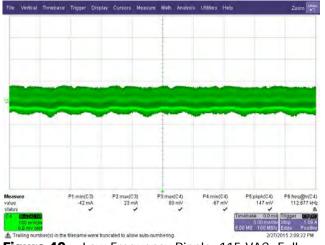


Figure 40 – Low Frequency Ripple, 115 VAC, Full Load. V_{OUT}, 100 mV / div. 5 ms / div.

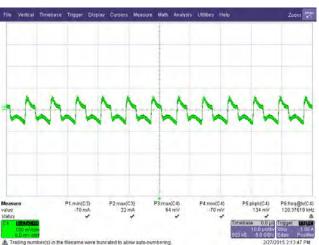


Figure 39 – Switching Noise, 90 VAC, Full Load. V_{OUT} , 100 mV / div. 10 μ s / div.

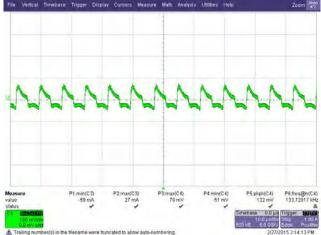


Figure 41 – Switching Noise, 115 VAC, Full Load. V_{OUT} , 100 mV / div. 10 μ s / div.

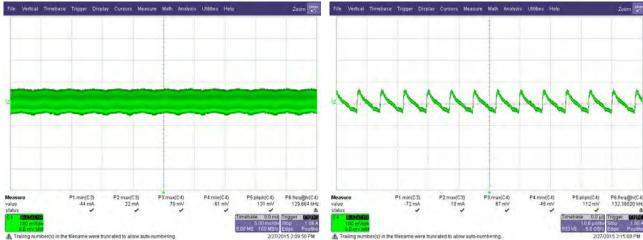


Figure 42 - Low Frequency Ripple, 230 VAC, Full Load. V_{OUT}, 100 mV / div. 5 ms / div.

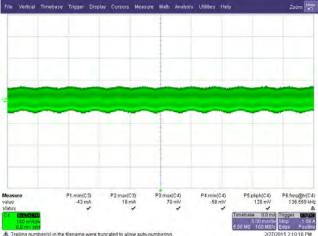


Figure 44 – Low Frequency Ripple, 265 VAC, Full Load. $V_{\text{OUT}},\,100$ mV / div. 5 ms / div.

Figure 43 - Switching Noise, 230 VAC, Full Load. $V_{\text{OUT}},\,100$ mV / div. 10 μs / div.

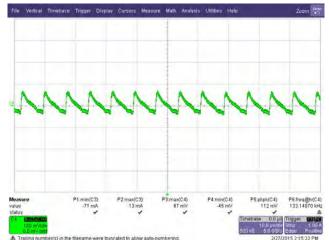
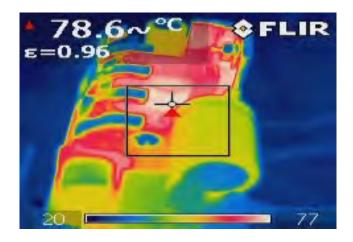


Figure 45 – Switching Noise, 265 VAC, Full Load. $V_{\text{OUT}},\,100$ mV / div. 10 μs / div.

9201


Power Integrations

12 Thermal Performance

12.1 Thermal Performance (T_{AMBIENT}=25 °C)

Thermal performance was measured at full load operation, open frame at ambient temperature of 25 °C. The transformer winding temperature was taken on the outermost layer.

Item	Description	100 VAC Full Load (°C)
1	Output Diode (D4)	77.9
2	Output Diode Heat Sink (HS2)	74.1
3	Secondary Snubber Resistor (R19, R20)	75.7
4	Output Capacitor (C15)	52.8
5	LNK6777E (U1)	73.3
6	LNK6777E Heat Sink (HS1)	69.3
7	Transformer Winding (T1)	80.2
8	NTC (RT1)	79.1
9	Input Capacitor (C9)	52.9
10	Input CMC (L2)	57.6
11	Bridge Rectifier (BR1)	74.5
12	Primary Clamp Resistor (R1, R2, R3)	72.1

12.2 Thermal Performance (T_{AMBIENT} = 45 °C)

Thermal performance was measured at full load operation, enclosed in a box and placed inside a thermal chamber at ambient temperature of 45°C. The transformer winding temperature was taken on the outermost layer.

Item	Description	100 VAC Full Load (°C)	90 VAC Full Load (°C)
1	Output Diode (D4)	108.3	111.8
2	Secondary Snubber Resistor (R19, R20)	98.1	101.1
3	Primary Clamp Diode (D1)	99.6	103.9
4	Primary Clamp Resistor (R1, R2, R3)	101.9	106.4
5	LNK6777E (U1)	100.8	106.9
6	Transformer Winding (T1)	106	110.5
7	Transformer Core (T1)	103.3	107.5
8	Bridge Rectifier (BR1)	99	105.8
9	Ambient Inside the Box	71.8	74.4

13 Gain-Phase Measurement

13.1 Gain-Phase Plot

Gain-phase measurements were carried out on DER-453 at 20%, 50% and 100% loads.

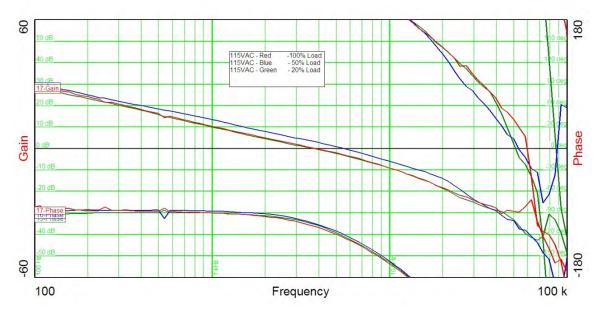


Figure 83 – Gain-Phase Measurement at 115 VAC Input.

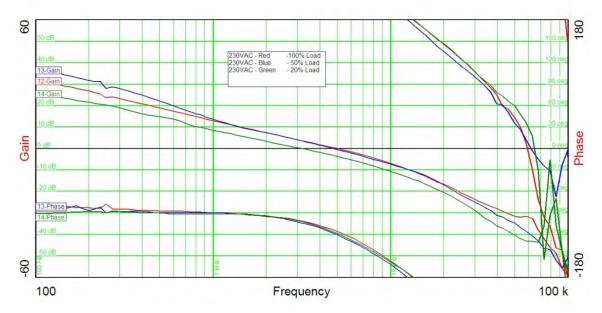


Figure 83 – Gain-Phase Measurement at 230 VAC Input.

14 AC Surge (Resistive Full Load at the Output)

Following Common mode and differential mode surge tests were performed on DER-453 power supply. 10 strikes have been applied on each condition.

	Combination Wave Surge Test (IEC 61000-4-5)											
S/N	Polarity	Voltage (kV)	Time Interval	Impedance (Ω)	Angle	Common Mode	Test Result					
1	Positive	3	10 Sec	12	0, 90, 180 & 270 Deg	L, N-PE	Pass					
2	Negative	3	10 Sec	12	0, 90, 180 & 270 Deg	L, N-PE	Pass					
3	Positive	3	10 Sec	12	0, 90, 180 & 270 Deg	L-PE	Pass					
4	Negative	3	10 Sec	12	0, 90, 180 & 270 Deg	L-PE	Pass					
5	Positive	3	10 Sec	12	0, 90, 180 & 270 Deg	N-PE	Pass					
6	Negative	3	10 Sec	12	0, 90, 180 & 270 Deg	N-PE	Pass					

	Combination Wave Surge Test (IEC 61000-4-5)											
S/N	S/NPolarityVoltage (kV)Time IntervalImpedance (Ω)Angle					Differential Mode	Test Result					
1	Positive	3	10 Sec	2	0, 90, 180 & 270 Deg	L-N	Pass					
2	Negative	3	10 Sec	2	0, 90, 180 & 270 Deg	L-N	Pass					

	Electrical Fast Transient Burst Test (IEC 61000-4-4)											
S/N	# of Pulses	Voltage (kV)	Duration	Repetition Frequency	Angle CM/DM		Repetitive Bursts	Test Result				
1	75	±2	1 Min	2.5 kHz ± 20%	Asynchronous	L, N, PE	300 ms	Pass				
2	75	±2	1 Min	2.5 kHz ± 20%	Asynchronous	L, N	300 ms	Pass				

•					
Device	Discharge Type	Discharge Location	Voltage (kV)	# of Events (1/Sec)	Remarks
		. Output Torminal	+8.8	10	PASS
	Contact	+ Output Terminal	-8.8	10	PASS
	Contact	Output Terminal	+8.8	10	PASS
LNK6777E		- Output Terminal	-8.8	10	PASS
LINKO///E		. Output Torminal	+16.5	10	PASS
	Air	+ Output Terminal	-16.5	10	PASS
	All	Output Terminal	+16.5	10	PASS
		- Output Terminal	-16.5	10	PASS

15 ESD (Resistive Full Load at the Output)

PASS = No output glitch or latch-off.

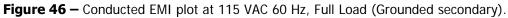
16 EMI Tests at Full Load

Conducted and radiated emissions tests were performed at 115 VAC and 230 VAC at full load. Composite EN55022B / CISPR22B conducted limits are shown. All the tests show excellent EMI performance.

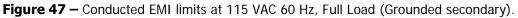
16.1 Conducted EMI Test Set-Up


Note:

- 1. Copper foil with insulation was used to wrap the board and copper foil was connected to secondary ground.
- 2. Ferrite beads (Qty-2) were used on output cable (King core P/N: K5BT14.2*13.5*6.35).

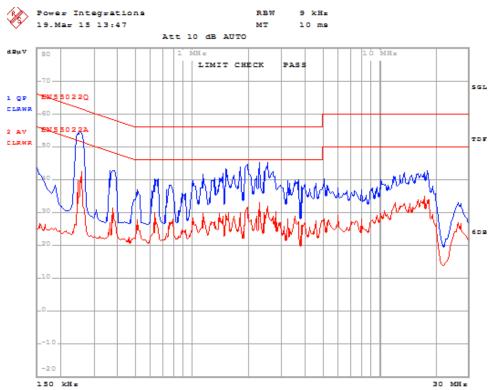
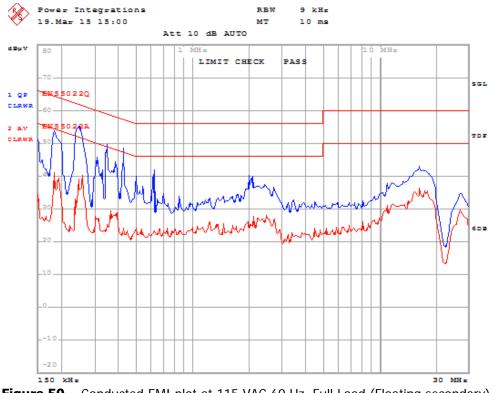


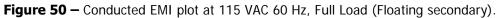
9201


Power Integrations

16.2 Conducted EMI Results

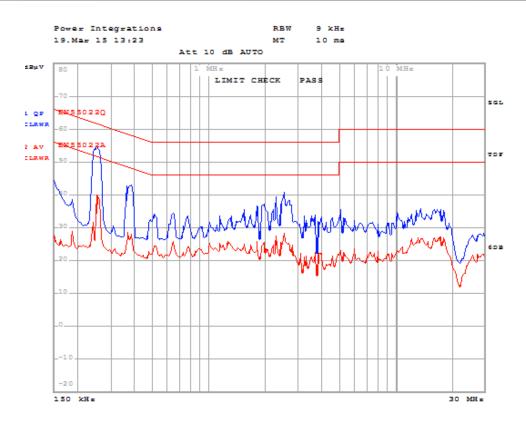
		EDIT PEAK LIS	ST (I	Prescan H	Results)	
Tra	cel:	EN55022Q				
Tra	ce2:	EN55022A				
Tra	ce3:					
	TRACE	FREQUENCY		LEVEL d	ΒμV	DELTA LIMIT de
1	Quasi Pea	k 150 kHz		46.31	N gnd	-19.68
1	Quasi Pea	182.849162999	kHz	54.48	N gnd	-9.87
2	Average	190.236269184	kHz	40.03	N gnd	-13.99
1	Quasi Pea	251.012717153	kHz	50.17	N gnd	-11.55
2	Average	251.012717153	kHz	39.45	N gnd	-12.26
1	Quasi Pea	305.983101557	kHz	42.02	N gnd	-18.05
1	Quasi Pea	372.991693411	kHz	43.10	N gnd	-15.32
2	Average	388.060557825	kHz	30.64	N gnd	-17.46
1	Quasi Pea	428.450212374	kHz	37.95	N gnd	-19.33
2	Average	1.46255097494	MHz	31.83	N gnd	-14.16
1	Quasi Pea	1.74788380138	MHz	42.79	N gnd	-13.20
2	Average	2.21673928895	MHz	32.28	N gnd	-13.71
1	Quasi Pea	2.26107407473	MHz	42.67	N gnd	-13.32
1	Quasi Pea	17.0424610519	MHz	48.50	N gnd	-11.49
2	Average	17.3833102729	MHz	42.24	N gnd	-7.75

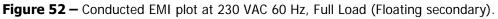




Figure 48 - Conducted EMI plot at 230 VAC 60 Hz, Full Load (Grounded secondary).

		EDIT PEAK LIST	(Prescan	Results)	
Tra	cel:	EN55022Q			
Tra	ce2:	EN55022A			
Tra	ce3:	222			
	TRACE	FREQUENCY	LEVEL o	łΒµV	DELTA LIMIT de
1	Quasi Peak	256.032971496 kH	55.06	N gnd	-6.49
2	Average	261.153630926 kH	z 42.65	N gnd	-8.73
1	Quasi Peak	380.451527279 kH	z 42.98	N gnd	-15.28
2	Average	380.451527279 kH	z 31.24	N gnd	-17.02
2	Average	636.654477383 kH	2 29.91	N gnd	-16.08
1	Quasi Peak	1.15321146268 MH	z 41.54	N gnd	-14.45
2	Average	1.15321146268 MH	z 29.73	N gnd	-16.26
2	Average	1.40575833808 MH	z 29.73	N gnd	-16.26
1	Quasi Peak	1.46255097494 MH	z 42.02	N gnd	-13.97
1	Quasi Peak	1.52163803433 MH	z 43.44	N gnd	-12.55
2	Average	1.58311221091 MH	z 30.08	N gnd	-15.91
1	Quasi Peak	1.81849830696 MH	z 43.92	N gnd	-12.07
1	Quasi Peak	1.96840105035 MH	z 44.63	N gnd	-11.36
2	Average	1.96840105035 MH	2 31.70	N gnd	-14.29
1	Quasi Peak	2.30629555622 MH	2 45.15	N gnd	-10.84
2	Average	2.30629555622 MH	z 33.03	N gnd	-12.96
1	Quasi Peak	2.54633665013 MH	z 45.16	N gnd	-10.83
2	Average	2.54633665013 MH	z 32.01	N gnd	-13.98
2	Average	17.3833102729 MH	2 35.01	N gnd	-14.98
1	Quasi Peak	18.085596008 MHz	42.74	N gnd	-17.25

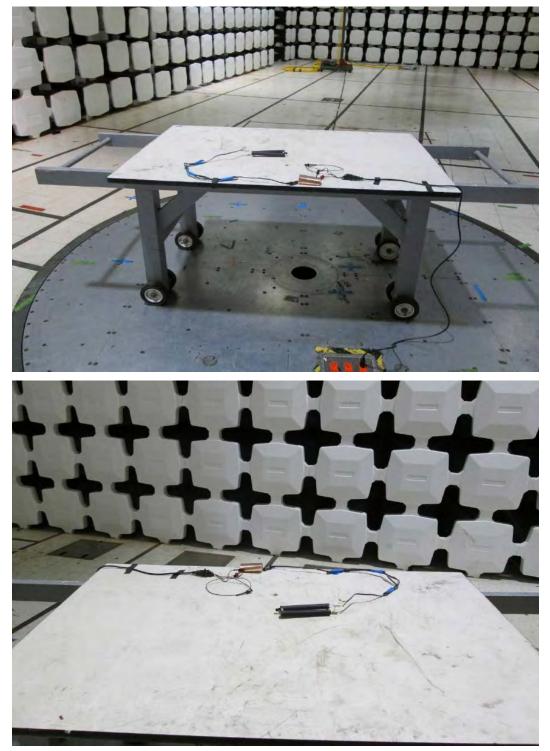
Figure 49 - Conducted EMI limits at 230 VAC 60 Hz, Full Load (Grounded secondary).



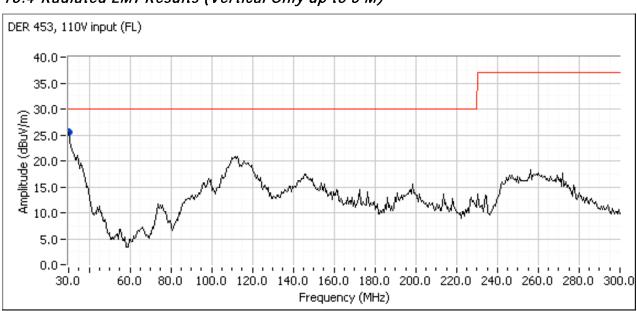


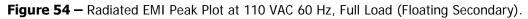
		EDIT PEAK LIST (Prescan Results)
Tra	cel:	EN55022Q
Tra	ce2:	EN55022A
Tra	ce3:	
	TRACE	FREQUENCY LEVEL dBµV DELTA LIMIT di
1	Quasi Peak	150 kHz 50.88 N gnd -15.11
1	Quasi Peak	182.849162999 kHz 53.80 N gnd -10.55
2	Average	182.849162999 kHz 40.99 N gnd -13.36
1	Quasi Peak	251.012717153 kHz 55.30 N gnd -6.41
2	Average	261.153630926 kHz 40.22 N gnd -11.16
1	Quasi Peak	312.102763589 kHz 45.62 N gnd -14.28
1	Quasi Peak	351.478403302 kHz 49.56 N gnd -9.36
2	Average	365.678130795 kHz 29.35 N gnd -19.24
1	Quasi Peak	428.450212374 kHz 48.56 N gnd -8.71
1	Quasi Peak	501.99771062 kHz 39.91 N gnd -16.08
1	Quasi Peak	624.171056258 kHz 42.05 N gnd -13.94
1	Quasi Peak	2.00776907136 MHz 40.25 N gnd -15.74
2	Average	2.49640848052 MHz 28.26 N gnd -17.73
1	Quasi Peak	16.3806815186 MHz 43.05 N gnd -16.94
2	Average	16.3806815186 MHz 36.21 N gnd -13.78

Figure 51 - Conducted EMI limits at 115 VAC 60 Hz, Full Load (Floating secondary).



		EDIT PEAK LIS	Т (І	Prescan H	Resu	ilts)	
Trace1:		EN55022Q					
Tra	ace2:	EN55022A					
Tra	ice3:						
	TRACE	FREQUENCY		LEVEL d	вµν		DELTA LIMIT de
1	Quasi Peak	256.032971496	kH2	54.81	N	gnd	-6.74
2	Average	256.032971496	kHz	40.07	N	gnd	-11.48
2	Average	372.991693411	kHz	28.78	N	gnd	-19.65
1	Quasi Peak	388.060557825	kHz	43.07	N	gnd	-15.03
1	Quasi Peak	1.81849830696	MHz	36.43	N	gnd	-19.56
1	Quasi Peak	1.96840105035	MHz	37.43	N	gnd	-18.56
1	Quasi Peak	2.30629555622	MHz	39.39	N	gnd	-16.61
2	Average	2.30629555622	MHz	27.53	N	gnd	-18.46
1	Quasi Peak	2.54633665013	MHz	40.71	N	gnd	-15.28
2	Average	2.54633665013	MHz	28.39	N	gnd	-17.60


Figure 53 – Conducted EMI limits at 230 VAC 60 Hz, Full Load (Floating secondary).


16.3 Radiated EMI Test Setup

16.4 Radiated EMI Results (Vertical Only up to 3 M)

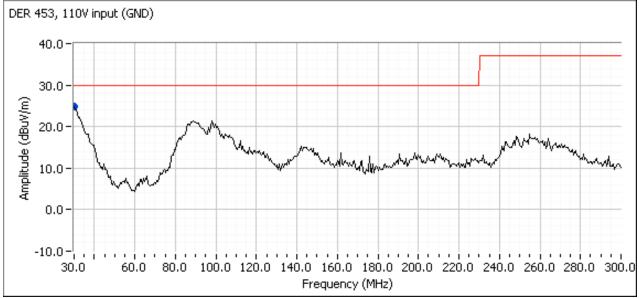


Figure 55 – Radiated EMI Peak Plot at 110 VAC 60 Hz, Full Load (Grounded Secondary).

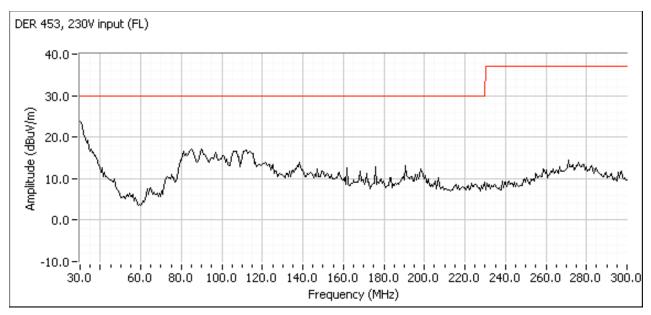
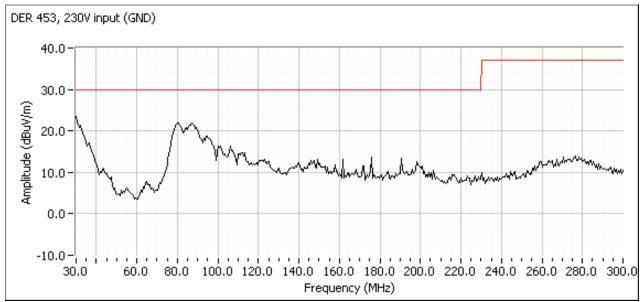



Figure 56 - Radiated EMI Peak Plot at 230 VAC 50 Hz, Full Load (Floating Secondary).

17 Revision History

Date	Author	Revision	Description and Changes	Reviewed
13-Jul-15	SS	1.0	Initial Release.	Apps & Mktg
23-Aug-16	-Aug-16 KM 1.1 Updated Figure 3 schematic.		Updated Figure 3 schematic.	

For the latest updates, visit our website: www.power.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, InnoSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Ospeed, EcoSmart, Clampless, E-Shield, Filterfuse, FluxLink, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2015 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@power.com

CHINA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 e-mail: chinasales@power.com

CHINA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 Fax: +86-755-8672-8690 e-mail: chinasales@power.com

GERMANY

Lindwurmstrasse 114 80337, Munich Germany Phone: +49-895-527-39110 Fax: +49-895-527-39200 e-mail: eurosales@power.com

INDIA

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: indiasales@power.com

ITALY

Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 Fax: +39-028-928-6009 e-mail: eurosales@power.com JAPAN Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: japansales@power.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: koreasales@power.com

SINGAPORE

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: singaporesales@power.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: taiwansales@power.com

UK

First Floor, Unit 15, Meadway Court, Rutherford Close, Stevenage, Herts. SG1 2EF United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: eurosales@power.com

Page 66 of 66