Design Example Report

Title	$\mathbf{1 9 0}$ W Continuous, 280 W Peak DC-DC Forward Converter with Standby Running at 132 $\mathbf{~ H Z}$ Using HiperTFS
Specification TFS7703H	

0.83 A Standby Outputs\end{array}\right|\)\begin{tabular}{ll|}
\hline Application \& All-In-One PC Power Supply

\hline Author \& Applications Engineering Department

\hline | Document |
| :--- |
| Number | \& DER-368

\hline Date \& August 3, 2015

\hline Revision \& 7.2

\hline
\end{tabular}

Summary and Features

- High efficiency integrated main and standby converters
- Integrated high-side driver
- Built-in main and standby undervoltage lockout
- Volt-second limiting protects main transformer
- Flat standby power limit vs. input voltage
- 132 kHz operating frequency allows small main transformer (EF25)
- $>91 \%$ high efficiency main converter

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

Power Integrations

5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +14084149200 Fax: +14084149201
www.powerint.com

Table of Contents

1 Introduction .. 4
2 Power Supply Specification .. 6
3 Schematic ... 7
4 Circuit Description... 8
5 PCB Layout.. 11
6 Bill of Materials .. 13
7 Design Spreadsheet ... 15
8 Main Transformer (T1) Specification ... 24
8.1 Electrical Diagram.. 24
8.2 Electrical Specifications ... 24
8.3 Materials... 24
8.4 Build Diagram ... 25
8.5 Build Instructions .. 27

9 Output Inductor (L1) Specification.. 28
9.1 Electrical Diagram... 28
9.2 Electrical Specifications ... 28
9.3 Materials... 28

10 Standby Supply Transformer (T2) Specification ... 29
10.1 Electrical Diagram.. 29
10.2 Electrical Specifications .. 29
10.3 Materials... 29
10.4 Build Diagram .. 30
10.5 Build Instructions ... 30

11 Heat Sink Assemblies ... 31
11.1 Primary Heat Sink Sheet Metal... 31
11.2 Completed Primary Heat Sink .. 32
11.3 Primary Heat Sink Assembly ... 33
11.4 Secondary Heat Sink Sheet Metal.. 34
11.5 Completed Secondary Heat Sink ... 35
11.6 Secondary Heat Sink Assembly .. 36

12 Performance Measurements.. 37
12.1 Efficiency... 37
12.2 Standby No-Load Input Power .. 41
12.3 Regulation .. 42
12.4 Waveforms .. 44
12.5 Main Output Diode Peak Reverse Voltage .. 45
12.6 Start-up and Hold-up .. 47
12.7 Ripple... 49
12.7.1 Ripple Measurement Technique.. 49
12.7.2 Ripple Measurement Results ... 50
12.8 Transient Response .. 51

13 Thermal Testing ... 53
13.1 Thermal Pictures 54
13.2 Thermocouple Measurements for Main Output Rectifiers 56
14 Gain-Phase 57
15 Revision History 58

I mportant Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved.

1 Introduction

This document is an engineering report describing preliminary testing of a 190 W continuous, 280 W peak power supply consisting of a 2 -switch forward main converter and a flyback standby converter utilizing a TFS7703H IC operating at 132 kHz . An EF25 transformer was used for the main output supply and EE16 for the standby supply. The purpose of testing was to determine an achievable maximum output power (with fan cooling) for an evaluation board intended for a 12 V (only) output "All in One" solution for a PC power supply.
The main converter operates from an input voltage range of 300 VDC to 420 VDC. The standby converter operates from 120 VDC to 420 VDC. The high-voltage DC input in a typical system would be supplied from a PFC stage.

The document contains the power supply specification, schematic, bill of materials, transformer documentation, description of test setup, and performance data.

Figure 1 - DER-368 Populated Circuit Board Photograph, Top View.

Figure 2 - DER-368 Populated Circuit Board Photograph, Bottom View.

2 Power Supply Specification

The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

3 Schematic

Figure 3 - Schematic.

4 Circuit Description

The schematic in Figure 3 depicts a $12 \mathrm{~V}, 15 \mathrm{~A}$ forward DC-DC converter and a 12 V , 0.83 A flyback standby / primary bias supply implemented using the TFS7703H.

The HiperTFS-2 TFS7703H cost effectively incorporates a low-side 725 V main MOSFET, a high-side 530 V main MOSFET and a 725 V standby MOSFET, main and standby controllers, a high-side driver along with thermal shutdown and other fault protection and other control circuitry in a single package. The device is well suited for high power applications with both main and standby converter (such as PC power supplies). The standby operates over a wide input voltage range. The main converter is intended to accept boosted input voltage from a power-factor correction stage and normally operates over a range from 300 VDC to 385 VDC

4.1 Power Input and Fi/ter

This circuit is designed for PC power supplies with a main output power up to 180 W . Diode D13 causes fuse F1 to open in case of reverse input voltage connection, protecting against catastrophic failure. Capacitor Cl is the bulk energy storage element.

4.2 Primary Side

Components C2, R6 and VR3 form a turn-off clamping circuit that limits the drain voltage of U6 for both the standby converter drain and the drain of the lowside MOSFET of the main forward converter. Zener VR3 provides a defined clamp voltage and maintains a maximum voltage (150 V) on clamp capacitor C 2 . Most of the leakage and magnetizing energy is returned back to converter due to the slow recovery aspect of blocking diodes D3 and D4. A shared reset/leakage spike clamp between main and standby converters reduces component count. The standby is connected to the clamp via diode D3 and resistor R5 and the main section is connected through D8 and D4 together with R7. During the reset time, the main section is connected to a substantially higher reset voltage than $\mathrm{V}_{I N}$, hence the operating duty cycle of the main converter can extend beyond 50\% which lowers RMS switch currents without penalizing hold-up time.

The BYPASS (BP) pin along with capacitor C12 provides a decoupled operating voltage for the HiperTFS-2 controller. The value for C12 (10 $\mu \mathrm{F}$) also selects the operating frequency of the main converter at 132 kHz . At start-up the bypass capacitor is charged from a current source internal to IC U6. When the BP pin voltage reaches 5.8 V , the standby converter can begin switching and both the +12 V standby output and primaryside bias voltage will begin to rise. The output of the bias/auxiliary supply winding is rectified by diode D12 and filtered by capacitor C20. Output of the bias winding is used to supply power via resistor R16 to the HiperTFS-2 BP pin during standby only operation. Additional current is provided by Q1 and D10 from the primary bias supply when remoteon switch SW1 activates U3A and U3B and commands Q1 into an ON state. In a complete PC power supply application, this voltage is used to supply bias to the PFC controller through J4 connector. The value of R16 is selected to maintain the minimum
$700 \mu \mathrm{~A}$ required into BP pin to inhibit the internal HiperTFS-2 high-voltage current source and thus reduce no-load power consumption. Capacitor C12 connected to the BP pin of U6 provides decoupling for the internally regulated 5.85 V supply. Zener diode VR4 provides a voltage reference for Q1 to regulate the emitter voltage to 12.4 V for a stable 6 mA into BP pin besides providing a regulated supply for the PFC stage if used.

The ENABLE (EN) pin is the feedback pin for the standby controller section. Prior to the start-up a resistor R27 connected from EN to BP is detected to select one of several internal current limits for standby section. FEEDBACK (FB) pin resistor R25 is used to select one of three main current limits at start-up in the same manner as the EN pin. Four different resistor values can be used for R27 to select one of the four internal current limit configurations for the standby section, and three different values for R25 to select one of the three current limit configurations for the main section. The circuit presented here uses R27 ($232 \mathrm{k} \Omega$) for a standby $\mathrm{I}_{\text {um }}$ of 650 mA and $232 \mathrm{k} \Omega$ for R25, for a main $I_{\text {lim }}$ of 3.1 A .

The FB pin provides feedback for the main converter. An increase in current sinking from FB pin to ground will lead to a reduction in the operating duty cycle.

Diode D9 is used to provide the initial power for the bootstrap charging C3 and C6 during start-up. During this time the high-side MOSFET HS pin is briefly pulled to source for 12 ms. The nominal voltage on C6 during normal operation is shunt regulated to approximately 12 V . It is necessary to insure at all times a minimum of 13 V on capacitor C3.

Resistors R18, R19, and R36 are used to translate the maximum available OFF time reset voltage into a current for the R pin and compare with the L pin current to compute the maximum allowable duty cycle to prevent saturation and to also determine the maximum allowable duty factor as a function of peak on-time flux.

The LINE-SENSE (L) pin provides an input bulk voltage line-sense function. This information is used by the undervoltage and overvoltage detection circuits for both the main and standby sections. This pin can also be pulled down to source to implement a remote-ON/OFF of both the standby and main supplies simultaneously. Resistors R12, R13, and R35 are used to translate the input voltage into a current for L pin.

4.3 Output Rectification

For the standby section, output rectification is provided by diode D16. A low ESR capacitor, C17, provides filtering with low ripple. Inductor L2 and capacitor C15 form a post-filter to further reduce switching ripple and noise in the output.

For the main converter section, diode D7 rectifies during main on-time and diode D6 is the catch diode to provide a current discharge path for the output inductor, L1, during
Page 9 of $59 \quad \underset{\substack{\text { Power Integrations } \\ \text { Fax: }+1408 \text { 414 } \\ \text { www.power.com }}}{\text { Tel: }+14084149200}$
the main off-time. Inductor L1 together with capacitors C10 and C24 forms an output filter for the main converter and filters switching output ripple and noise.

4.4 Output Feedback

For the standby section, resistor R34 and R31 form a feedback divider network. The output voltage of the power supply is divided and fed to the input terminal of error amplifier U7. The cathode terminal voltage of U2A is controlled by the amplifier inside U7 to maintain the divider voltage to $2.5 \mathrm{~V} \pm 2 \%$. Change in cathode terminal voltage results in a change of the current through optocoupler diode inside U2A, which in turn changes the current through the transistor inside U2B. Capacitor C19 provides noise rejection for the EN pin. When the current sinking from the EN pin exceeds the EN pin threshold current, the next switching cycle is inhibited, and when the output voltage falls below the feedback threshold, a conduction cycle is allowed to occur. By adjusting the number of enabled cycles, output regulation is maintained. As the load reduces, the number of enabled cycles decreases thereby lowering the effective switching frequency and scales the switching losses with load. This provides almost constant efficiency down to very light loads, ideal for meeting energy efficiency requirements.

For the main section, resistors R9 and R24 are employed to provide the DC reference for the U5 error amplifier. In a similar manner, U5 controls the optocoupler U1 used to adjust the operating duty cycle through the current sink from the FB pin with the main difference being the FB pin current controls the duty cycle of the main converter in a linear manner versus the whole cycle on/off control of the standby converter. Components C4, C8-9, R10, and R21 compensate the main 12 V control loop. Components C5 and R11 comprise a "soft finish" network to prevent output overshoot at start-up.

Resistor R15 sets the gain for the control loop and resistors R10, R21 and capacitors C4, C8 and C9 shape the response of the control loop to achieve the desired loop gain crossover frequency and phase margin. Resistors R38 and R30 provide bias current required by ICs U5 and U7 respectively.

5 PCB Layout

Figure 4 - DER-368 PCB Layout, Top View.

Figure 5 - DER-368 PCB Layout, Bottom View.

6 Bill of Materials

Item	Qty	Ref Des	Description	Mfg Part Number	Mfg
1	1	C1	$120 \mu \mathrm{~F}, 450 \mathrm{~V}$, Electrolytic, (22×30)	ESMQ451VSN121MP30S	United Chemi-con
2	1	C2	$2.2 \mathrm{nF}, 1 \mathrm{KV}$, Ceramic, SL, 0.2" L.S.	DEBB33A222KA2B	Murata
3	2	C3 C6	100 nF 50 V, Ceramic, X7R, 0603	C1608X7R1H104K	TDK
4	3	C4 C5 C8	$47 \mathrm{nF}, 50 \mathrm{~V}$, Ceramic, X7R, 0805	GRM21BR71H473KA01L	Murata
5	3	C9 C18 C19	$1 \mathrm{nF}, 200 \mathrm{~V}$, Ceramic, X7R, 0805	08052C102KAT2A	AVX
6	2	C10 C24	$1500 \mu \mathrm{~F}, 16 \mathrm{~V}$, Electrolytic, Low ESR, 10×20)	EEU-FR1C152	Panasonic
7	1	C12	10 ¢F, 16 V , Ceramic, X5R, 0805	GRM21BR61C106KE15L	Murata
8	1	C13	470 pF, 100 V , Ceramic, X7R, 0805	08051C471KAT2A	AVX
9	1	C15	$330 \mu \mathrm{~F}, 25 \mathrm{~V}$, Electrolytic, Low ESR, $90 \mathrm{~m} \Omega$, (10×12.5)	ELXZ250ELL331MJC5S	Nippon Chemi-Con
10	1	C16	$330 \mathrm{nF}, 50 \mathrm{~V}$, Ceramic, X7R, 0805	GRM219R71H334KA88D	Murata
11	1	C17	$\begin{aligned} & 1000 \mu \mathrm{~F}, 16 \mathrm{~V}, \text { Electrolytic, Very Low ESR, } \\ & 23 \mathrm{~m} \Omega,(10 \times 20) \\ & \hline \end{aligned}$	EKZE160ELL102MJ $20 S$	Nippon Chemi-Con
12	1	C20	$\begin{aligned} & 330 \mu \mathrm{~F}, 35 \mathrm{~V}, \text { Electrolytic, Low ESR, } 68 \mathrm{~m} \Omega, \\ & (10 \times 16) \end{aligned}$	ELXZ350ELL331MJ 16S	Nippon Chemi-Con
13	1	C21	2.2 nF, Ceramic, Y1	440LD22-R	Vishay
14	1	C22	3.3 nF, 100 V, Ceramic, X7R, Radial	FK18X7R2A332K	TDK
15	2	D3 D4	1000 V, 1 A, Rectifier, DO-41	1N4007-E3/54	Vishay
16	2	D6 D7	$60 \mathrm{~V}, 30 \mathrm{~A}$, Dual Schottky, TO-220AB	STPS30L60CT	ST
17	2	D8 D9	$600 \mathrm{~V}, 1 \mathrm{~A}$, Ultrafast Recovery, $75 \mathrm{~ns}, \mathrm{DO}-41$	UF4005-E3	Vishay
18	1	D10	$100 \mathrm{~V}, 0.2 \mathrm{~A}$, Fast Switching, 50 ns , SOD-323	BAV19WS-7-F	Diodes, Inc.
19	1	D12	$200 \mathrm{~V}, 1 \mathrm{~A}, \mathrm{Ultrafast} \mathrm{Recovery} 50 \mathrm{~ns},, \mathrm{DO}-41$	UF4003-E3	Vishay
20	1	D13	$600 \mathrm{~V}, 1 \mathrm{~A}$, Rectifier, DO-41	1N4005-T	Diodes, Inc.
21	1	D16	100 V, 3 A, Schottky, DO-201AD	SB3100-T	Diodes, Inc.
22	1	ESIP CLIP1	Heat sink Hardware, Edge Clip $20.76 \mathrm{~mm} \mathrm{~L} \times 8$ mm W	NP975864	Aavid Thermalloy
23	1	F1	3.15 A, 250V, Slow, TR5	37213150411	Wickman
24	2	$\begin{gathered} \hline \text { HS PAD1 HS } \\ \text { PAD2 } \end{gathered}$	HEAT SINK PAD, TO-220, Sil-Pad 1000	1009-58	Bergquist
25	1	HS1	HEAT SINK, DER-368, Primary-		Custom
26	1	HS2	HEAT SINK, DER-368, Secondary		Custom
27	1	J2	2 Position (1×2) header, $5 \mathrm{~mm}(0.196)$ pitch, Vertical	1715022	Phoenix Contact
28	1	J3	CONN HEADER 3POS (1×3). 156 VERT TIN (PULL PIN 2)	26-48-1031	Molex
29	1	J4	2 Position (1 x 2) header, 0.1 pitch, Vertical	22-23-2021	Molex
30	1	J5	CONN TERM BLOCK 5MM 4POS	1711042	Phoenix Contact
31	2	JP1 JP13	Wire Jumper, Non-Insulated, \#22 AWG, 0.2 in	298	Alpha
32	6	$\begin{gathered} \hline \text { JP2 JP3 JP4 JP15 } \\ \text { JP16 JP17 } \end{gathered}$	Wire Jumper, Non-Insulated, \#22 AWG, 0.3 in	298	Alpha
33	5	$\begin{gathered} \hline \text { JP5 JP6 JP7 JP8 } \\ \text { JP9 JP14 } \end{gathered}$	Wire J umper, Non Insulated, \#22 AWG, 0.5 in	298	Alpha
34	1	JP6	Wire J umper, Insulated, TFE, \#22 AWG, 0.5 in	C2004-12-02	Alpha
35	2	JP10	Wire J umper, insulated, TFE, \#22 AWG, 0.4 in	C2004-12-02	Alpha
36	1	JP11	Wire Jumper, insulated, TFE, \#22 AWG, 0.3 in	C2004-12-02	Alpha
37	1	JP12	Wire Jumper, Non-insulated, \#22 AWG, 1.0 in	298	Alpha
38	3	JP18 JP19 J P21	Wire J umper, Non-insulated, \#22 AWG, 0.3 in	298	Alpha
39	1	JP20	Wire Jumper, Non-insulated, \#22 AWG, 0.7 in	298	Alpha
40	1	JP22	Wire Jumper, Non-insulated, \#22 AWG, 0.4 in	298	Alpha
41	1	L1	$41 \mu \mathrm{H}$, Inductor Toroidal, Sendust		
42	1	L2	$2.2 \mu \mathrm{H}, 6.0 \mathrm{~A}$	RFB0807-2R2L	Coilcraft

43	2	NUT1 NUT2	Nut, Hex, Kep 4-40, S ZN Cr3 plating RoHS	4CKNTZR	Any RoHS Compliant Mfg.
44	3	```POST- CRKT_BRD_6- 32 HEX1 POST- CRKT_BRD_6- 32_HEX2 POST- CRKKT_BRD_6- 32 HEX3```	Post, Circuit Board, Female, Hex, 6-32, snap, 0.375L, Nylon	561-0375A	Eagle Hardware
45	1	Q1	NPN, Small Signal BJT, GP SS, $40 \mathrm{~V}, 0.6 \mathrm{~A}$, SOT-23	MMBT4401LT1G	Diodes, Inc.
46	1	R1	$2.2 \Omega, 5 \%$, 1 W, Metal Film, Fusible	NFR0100002208J R500	Vishay
47	1	R5	$4.7 \Omega, 5 \%, 1 / 2 \mathrm{~W}$, Carbon Film	CFR-50J B-4R7	Yageo
48	1	R6	$100 \Omega, 5 \%, 1 / 2 \mathrm{~W}$, Carbon Film	CFR-50J B-100R	Yageo
49	1	R7	$2.2 \Omega, 5 \%, 1 / 2 \mathrm{~W}$, Carbon Film	CFR-50J B-2R2	Yageo
50	1	R9	$15 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF1502V	Panasonic
51	1	R10	$220 \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ221V	Panasonic
52	1	R11	$39 \mathrm{k} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ393V	Panasonic
53	3	R12 R13 R19	1.33 M $2,1 \%, 1 / 4 \mathrm{~W}$, Metal Film	MF1/4DCT52R1334F	KOA Speer
54	3	R18 R35 R36	1.33 M $, 1 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	RC1206FR-071M33L	Yageo
55	5	$\begin{gathered} \text { R14 R15 R30 } \\ \text { R33 R38 } \\ \hline \end{gathered}$	$1 \mathrm{k} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ 102V	Panasonic
56	1	R16	$7.5 \mathrm{k} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ 752V	Panasonic
57	2	R20,R22	$4.7 \mathrm{k} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ 472V	Panasonic
58	1	R21	$3.3 \mathrm{k} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ 332V	Panasonic
59	1	R22	$4.7 \mathrm{k} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ 472V	Panasonic
60	1	R23	619 , 1\%, 1/4 W, Metal Film	MFR-25FBF-619R	Yageo
61	2	R25,R27	$232 \mathrm{k} \Omega, 1 \%, 1 / 16 \mathrm{~W}$, Thick Film, 0603	ERJ-3EKF2323V	Panasonic
62	1	R26	$200 \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Carbon Film	CFR-25J B-200R	Yageo
63	1	R28	$100 \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6EGYJ 101V	Panasonic
64	1	R31	$4.99 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF4991V	Panasonic
65	1	R32	$10 \mathrm{k} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ 103V	Panasonic
66	1	R34	19.1 k $2,1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF1912V	Panasonic
67	1	R37	Resistor, Metal Oxide, $2.2 \Omega, 1 \mathrm{~W}, 5 \%$	RSF-100J B-2R2	Yageo
68	1	R39	$4.7 \mathrm{k} \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Carbon Film	CFR-25J B-4K7	Yageo
69	1	RTV1	Thermally conductive Silicone Grease	120-SA	Wakefield
70	2	SCREW1 SCREW2	SCREW PHIL Flat head, undercut 4-40 X . 3750 (3/8) SST		Any RoHS Compliant Mfg.
71	1	SCREW3	SCREW MACHINE PHIL 4-40 X 5/16 SS	PMSSS 4400031 PH	Building Fasteners
72	1	SW1	SLIDE MINI SPDT PC MNT AU	1101M2S3CBE2	C\&K Components
73	1	T1	Transformer, DER-368 Main, EF25, Vertical		
74	1	T2	Transformer, DER-368 Standby, EE16, Vertical	Custom	
75	3	U1 U2 U3	Optocoupler, 80 V, CTR 80-160\%, 4-Mini Flat	PC357N1TJ00F	Sharp
76	2	U5 U7	IC, REG ZENER SHUNT ADJ SOT-23	LM431AIM3/NOPB	National Semi
77	1	U6	HiperTFS-2, ESIP16/12	TFS7703H	Power Integrations
78	1	VR3	$150 \mathrm{~V}, 5 \mathrm{~W}, 5 \%$, TVS, D0204AC (DO-15)	P6KE150A	LittleFuse
79	1	VR4	$13 \mathrm{~V}, 5 \%, 500 \mathrm{~mW}, \mathrm{SOD}-123$	MMSZ5243BT1G	ON Semi
80	3	WASHER1 WASHER2 WASHER3	WASHER FLAT \#4 Zinc, OD 0.219, ID 0.125, Thk 0.032, Yellow Chromate Finish	5205820-2	Tyco
81	2	WASHER6 WASHER7	Washer Nylon Shoulder \#4	3049	Keystone

Power I ntegrations, Inc.

7 Design Spreadsheet

HiperTFS2_Twoswitch_Forward_04161 3; Rev.1.0; Copyright Power Integrations 2013	INPUT	INFO	OUTPUT	UNIT	HiperTFS2_041613_Rev10.xIs; Two-switch Forward Transformer Design Spreadsheet
Hiper-TFS MAI N OUTPUT (TWO-SWITCH FORWARD STAGE)					
OUTPUT VOLTAGE AND CURRENT					
VMAIN	12.00			V	Main output voltage
IMAIN	15.00			A	Main output current
VOUT2				V	Output2 voltage - enter zero if none
IOUT2				A	Output2 current - enter zero if none
POST REGULATED OUTPUT					
Post Regulator	NONE	Info			!!!! Info. No Selection for postregulator - select 'NONE' if not using post-regulator
V_SOURCE				V	Select source of input voltage for post regulator. Enter None if Post regulator not used.
VOUT3			0	V	Enter postregulator output voltage
IOUT3			0	A	Enter post regulator output current
n_PR			1		Enter postregulator efficiency (Buck only)
COUPLED-I NDUCTOR (LOW POWER) DERIVED OUTPUT					
VOUT4				V	Coupled-Inductor derived (low power) output voltage (typically -12 V)
IOUT4				A	Coupled-Inductor derived (low power) output current
POUT(Main)			180.0	W	Total output power (Main converter)
POUT_PEAK(Main)			180.0	W	Peak Output power(Main converter). If there is no peak power requirement enter value equal to continuous power
POUT(Standby)			10.3	W	Continuous output power from Standby power supply
POUT_PEAK(Standby)			10.0	W	Peak output power from Standby section
POUT(System Total)			190.3	W	Total system continuous output power
POUT_PEAK(System Total)			190.0	W	Total system peak output power
VBIAS	17.00			V	DC bias voltage from main transformer aux winding
I NPUT VOLTAGE AND UV/ OV					
CIN	120.00		120	uF	Input Capacitance. To increase CMIN, increase T HOLDUP
T_HOLDUP			20	ms	Holdup time
CIN	120.00		120	uF	Select Bulk Capacitor
CIN_ESR			0.55	ohms	Bulk capacitor ESR
IRMS_CIN			0.67	A	RMS current through bulk capacitor
PLOSS_CIN			0.25	W	Bulk capacitor ESR losses
VMIN			300.0	V	Minimum input voltage to guarantee output regulation
VNOM			380.0	V	Nominal input voltage
VMAX			420.0	V	Maximum DC input voltage
RR			3.92	M-ohm	
RL			3.92	M-ohm	Minimum undervoltage On-Off

				threshold
UV / OV / UVOV				Minimum undervoltage Off-On threshold (turn-on)
VUV OFF (min)		181.8	V	Minimum overvoltage Off-On threshold
VUV ON (min)		295.5	V	Minimum overvoltage On-Off threshold (turn-off)
VOV ON (min)		526.7	V	R pin resistor
VOV OFF (min)		526.7	V	Line Sense resistor value (L-pin) goal seek (VUV OFF) for std 1\% resistor series
VUV OFF (max)		225.0	V	
VUV ON (max)		326.9	V	
ENTER DEVI CE VARI ABLES				
Device	TFS7703	TFS7703		Selected HiperTFS device
Select Frequency mode	f	f		Select Frequency mode. "H" indicates 66 kHz selection, "F" indicates 132 kHz selection
ILIMIT_MIN		3.01	A	Device current limit (Minimum)
ILIMIT_TYP		3.24	A	Device current limit (Typical)
ILIMIT_MAX		3.47	A	Device current limit (Maximum)
fSMIN		124000	Hz	Device switching frequency (Minimum)
fS		132000	Hz	Device switching frequency (Typical)
fSMAX		140000	Hz	Device switching frequency (Maximum)
KI	1.0	1.0		Select Current limit factor (KI=1.0 for default ILIMIT, or select KI=0.9 or $\mathrm{KI}=0.7$)
R(FB)		232.0	k-ohms	Feedback Pin Resistor value
ILIMIT SELECT		3.01	A	Selected current limit
RDS(ON)		5.00	ohms	Rds(on) at 100'C
DVNOM_GOAL		0.45		Target duty cycle at nominal input voltage (VNOM)
VDS		5.07	V	HiperTFS average on-state Drain to Source Voltage
Main MOSFET losses				
RDSON_LOWER		3.60	ohm	RDSON for low side MOSFET
RDSON_UPPER		1.40	ohm	RDSON for high side MOSFET
PCOND_LOWER		2.6	W	Conduction losses in lower MOSFET
PCOND_UPPER		1.0	W	Conduction losses in upper MOSFET
COSS_LOWER		35	pF	COSS for low side MOSFET
COSS_UPPER		110	pF	COSS for high side MOSFET
V_Coss upper FET		150	V	Voltage across upper MOSFET during turn off
P_Coss lower FET		0.12	W	Switching loss in upper MOSFET
P_Coss upper FET		0.16	W	Switching loss in lower MOSFET
lower FET crossoever loss		0.72	W	Crossover loss in lower MOSFET
TOTAL_MOSFET_LOSS		6.92		Total loss in MOSFET (upper + lower)
Clamp Section				
Clamp Selection	CLAMP TO RAIL			Select either "CLAMP TO RAIL" (default) or "CLAMP TO GND"
VCLAMP		150.00	V	Asymmetric Clamp Voltage
VDSOP		570.00	V	Maximum Hiper-TFS Drain voltage (at VOVOFF MAX)
DIODE Vf SELECTI ON				
VDMAIN	0.40	0.4	V	Main output diodes forward voltage

				drop
VDOUT2		0.5	V	Secondary output diodes forward voltage drop
VDOUT3		0.5	V	3rd output diodes forward voltage drop
VDB		0.7	V	Bias diode forward voltage drop
TRANSFORMER CORE SELECTI ON				
Core Type	Auto	EF25		Selected core type
AE		0.518	cm^2	Core Effective Cross Sectional Area
LE		5.78	cm	Core Effective Path Length
AL		2000	$\mathrm{nH} / \mathrm{T}^{\wedge} 2$	Ungapped Core Effective Inductance
BW		15.6	mm	Bobbin Physical Winding Width
B_HT		4.60	mm	Height of bobbin (to calculate fit)
B_WA		0.72	cm^2	Bobbin Winding area
M		4.5	mm	Bobbin safety margin tape width (2 * $M=$ Total Margin)
LG_MAX		0.002	mm	Maximum zero gap tolerance, default 2um
LMAG_MAX		20	mH	Maximum magnetizing inductance of transformer. Do not exceed this value
LMAG	9.4	9	mH	Actual magnetizing inductance (measured) of transformer
FRES_TRF		173.04	kHz	Measured Primary winding self resonant frequency
C_TRF		90	pF	Estimated primary winding capacitance
L		3.00		Transformer primary layers (split primary recommended)
NMAIN	5.0	5.0		Main rounded turns
NS2		0.0		2nd output number of turns
NBIAS	0	0		VBias rounded turns (forward bias winding)
VOUT2 ACTUAL		0.0	V	Approximate Output2 voltage of with NS2 $=0$ turns (AC stacked secondary)
VBIAS_ACTUAL		-0.7	V	Approximate Forward Bias Winding Voltage at VMIN with NB $=0$ turns
TRANSFORMER DESI GN PARAMETERS				
NP		64		Primary rounded turns
BM_MAX		2548	Gauss	Max positive operating flux density at minimum switching frequency
BM PK-PK		3861	Gauss	Max peak-peak operating flux density at minimum switching frequency
BP_MAX		3229	Gauss	Max positive flux density at Vmax (limited by DVMAX clamp)
BP PK-PK		4892	Gauss	Max peak-peak flux density at Vmax (limited by DVMAX clamp)
IMAG		0.136	A	Peak magnetizing current at minimum input voltage
OD_P		0.31	mm	Primary wire outer diameter
AWG_P		29	AWG	Primary Wire Gauge (rounded to maximum AWG value)
TRANSFORMER LOSSES AND FIT ESTI MATE				
Core loss		12.4		
Core material	Auto	PC95		Select core material
BAC_pp		3627	gauss	Peak to peak flux density
core_loss_multiplier		2.04E-03		Core Loss constant

f_coeff		1.80		Frequency co-efficient
BAC_coeff		2.56		AC flux density co-efficient
specific core loss		995.50	$\mathrm{mW} / \mathrm{cc}$	Core loss per unit volume
core volume		3.02	cm^3	Volume of core
core loss		3.01	W	Core loss
PRI WI NDI NG FIT AND LOSSES				
OD_PRI		0.45	mm	Primary winding diameter
FILAR_PRI		1.00	strands	Number of parallel strands of wire (primary)
MLT_PRI		5.28	cm	Mean length per turn
DCR_PRI		465.19	milli-ohm	DC resistance of primary winding
PCOND_PRI		0.34	W	Conduction loss in primary winding
FILL_PRI		14	\%	Fill factor (primary only)
SEC WI NDI NG 1 (lower winding when AC stacked)				
VOUT		12	V	
NS1		5.0	turns	Number of turns
IRMS_SEC1		11.62	A	RMS current through winding
Foil/Wire	FOIL	FOIL	foil/wire	Select FOIL or WIRE for winding
OD/Thickness		0.125	mm	Wire diameter or Foil thickness
FILAR_SEC1		N/A	strands	Number of parallel strands (wire selection only)
SEC1_WIDTH		18	mm	Foil Width (Applicable if FOIL winiding used)
SEC1_MLT		5.28	cm	Mean length per turn
DCR_SEC1		2.59	milli-ohms	DC resistance of secondary winding
PCOND_SEC1		0.35	W	Conduction loss in secondary winding
FILL_SEC1		16	\%	Fill factor (secondary 1 only)
SEC WI NDI NG 2 (upper winding AC stacked)				
VOUT		0	V	
NS2		0.0	turns	Number of turns
IRMS_SEC2		0.00	A	RMS current through winding
Foil/Wire	FOIL	FOIL	foil/wire	Select FOIL or WIRE for winding
OD/Thickness		0.125	mm	Wire diameter or Foil thickness
FILAR_SEC2		N/A	strands	Number of parallel strands (wire selection only)
SEC2_WIDTH		18	mm	Foil Width (Applicable if FOIL winiding used)
SEC2_MLT		5.28	cm	Mean length per turn
DCR_SEC2		0.00	milli-ohms	DC resistance of secondary winding
PCOND_SEC2		0.00	W	Conduction loss in secondary winding
FILL_SEC2		0	\%	Fill factor (secondary 1 only)
Total main transformer				
FILL_TOTAL		30	\%	Total transformer fill factor
TOTAL_CU_LOSS		0.7	W	Total copper losses in transformer
TOTAL_CORE_LOSS		3.0	W	Total core losses in transformer
TOTAL_TRF_LOSS		3.7	W	Total losses in transformer
DUTY CYCLE VALUES (REGULATI ON)				
DVMIN		0.57		Duty cycle at minimum DC input voltage
DVNOM		0.45		Duty cycle at nominal DC input voltage
DVMAX		0.41		Duty cycle at maximum DC input voltage
DOVOFF MIN		0.32		Duty cycle at overvoltage DC input voltage(DOVOFF_MIN)

MAXI MUM DUTY CYCLE VALUES				
DMAX_UVOFF_MIN		0.65		Max duty cycle clamp at VUVOFF MIN
DMAX_VMIN		0.60		Max duty clamp cycle at VMIN
DMAX_VNOM		0.56		Max duty clamp cycle at VNOM
DMAX_VMAX		0.51		Max duty clamp cycle at VMAX
DMAX_OVOFFMIN		0.41		Max duty clamp cycle at VOVOFF MAX
CURRENT WAVESHAPE PARAMETERS				
IP		1.49	A	Maximum peak primary current at maximum DC input voltage
IP_PEAK		1.49	A	Peak primary current at Peak Output Power and max DC input voltage
IPRMS(NOM)		0.85	A	Nominal primary RMS current at nominal DC input voltage
OUTPUT I NDUCTOR OUTPUT PARAMETERS				
KDI_ACTUAL		0.31		Current ripple factor of combined Main and Output2 outputs
Core Type	Kool Mu 125u	Kool Mu 125u		Select core type
Core	$\begin{gathered} 77350(0 . D)=24 . \\ 3 \end{gathered}$	$\begin{gathered} 77350(0 . D)=24 . \\ 3 \end{gathered}$		Coupled Inductor - Core size
AE		38.80	mm^2	Core Effective Cross Sectional Area
LE		58.80	mm	Core Effective Path Length
AL		105.00	$\mathrm{nH} / \mathrm{T}^{\wedge} 2$	Ungapped Core Effective Inductance
BW		43.26	mm	Bobbin Physical Winding Width
VE		2280.00	mm^3	Volume of core
Powder cores (Sendust and Powdered I ron) Cores				
MUR		125.00		Relative permeability of material
H		55.49	AT/cm	Magnetic field strength
MUR_RATIO		0.29		Percent of permeability as compared to permiability at $\mathrm{H}=0$ AT/cm
LMAI N_ACTUAL		12.1	uH	Estimated inductance of main output at full load
LMAIN_Obias		42.00	uH	Estimated inductance of main output with 0 DC bias
LOUT2		0.00	uH	Estimated inductance of auxiliary output at full load
BM_IND		2534.69	Gauss	DC component of flux density
BAC_IND		388.82	Gauss	AC component of flux density
Turns				
INDUCTOR TURNS MULTIPLIER		3.00		Multiplier factor between main number of turns in transformer and inductor (default value $=3$)
NMAIN_INDUCTOR	20	20.00		Main output inductor number of turns
NOUT2_INDUCTOR		0.00		Output 2 inductor number of turns
NOUT4_INDUCTOR		N/A		Bias output inductor number of turns (for bias or control circuit VDD supply)
Ferrite Cores				
LMAI N_ACTUAL		N/ A	uH	Estimated inductance of main output
LOUT2		N/A	uH	Estimated inductance of aux output
LG		N/A	mm	Gap length of inductor cores
Target BM		N/A	Gauss	Target maximum flux density
BM_IND		N/A	Gauss	Estimated maximum operating flux

					density
BAC_IND			N/A	Gauss	AC flux density
Turns					
NMAIN_INDUCTOR			N/A		Main output inductor number of turns
NAUX_INDUCTOR			N/A		Aux output inductor number of turns
N_BIAS			N/A		Aux output inductor number of turns
Wire Parameters					
Total number of layers			1.03		Total number of layers for chosen toroid
IRMS_MAIN			15.02	A	RMS current through main inductor windings
IRMS_AUX			0.00	A	RMS current through aux winding
AWG_MAIN	18		18.00	AWG	Main inductor winding wire gauge
OD_MAIN			1.09	mm	Main winding wire gauge outer diameter
FILAR_MAIN			2.00		Number of parallel strands for main output
RDC_MAIN			6.74	mohm	Resistance of wire for main inductor winding
AC Resistance Ratio (Main)			3.78		Ratio of total resistance (AC + DC) to the DC resistance (using Dowell curves)
CMA_MAIN			216.57	CMA	Cir mils per amp for main inductor winding
J_MAIN			15.96	A/mm^2	Current density in main inductor winding
AWG_AUX			0.00	AWG	Aux winding wire gauge
OD_MAIN			N/A	mm	Auxiliary winding wire gauge outer diameter
FILAR_AUX			2.00		Number of parallel strands for aux output
RDC_AUX			0.00	mohm	Resistance of wire for aux inductor winding
AC Resistance Ratio (Aux)			0.00		Ratio of total resistance (AC + DC) to the DC resistance (using Dowell curves)
CMA_AUX		Info	0.00	CMA	!!! Info. Low CMA may cause overheating. Verify acceptable temperature rise
J_AUX			0.00	$\mathrm{A} / \mathrm{mm}{ }^{\wedge} 2$	Current density in auxiliary winding
Estimated Power Loss					
PCOPPER_MAIN			1.52	W	Copper loss in main inductor winding
PCOPPER_AUX			0.00	W	Copper loss in aux inductor windings
PCORE			0.43	W	Total core loss
PTOTAL_IND			1.95	W	Total losses in output choke
SECONDARY OUTPUT PARAMETERS					
ISFWDRMS			11.62	A	Max. fwd sec. RMS current (at DVNOM)
ISFWD2RMS			0.00	A	Max. fwd sec. RMS current (at DVNOM)
ISCATCHRMS			12.83	A	Max. catch sec. RMS current (at DVNOM)
ISCATCH2RMS			0.00	A	Max. catch sec. RMS current (at DVNOM)

IDAVMAINF			8.59	A	Maximum average current, Main rectifier (single device rating)
IDAVMAINC			8.90	A	Maximum average current, Main rectifier (single device rating)
IDAVOUT2F			0.00	A	Maximum average current, Main rectifier (single device rating)
IDAVOUT2C			0.00	A	Maximum average current, Main rectifier (single device rating)
			1.33	A	Maximum RMS current, Main output capacitor
IRMSMAIN			0.00	A	Maximum RMS current, Out2 output capacitor
IRMSOUT2			6	W	main diode loss
PD_LOSS_MAIN			W		output 2 diode loss
PD_LOSS_OUT2	100%		44.5	V	Main Forward Diode peak-inverse voltage (at VDSOP)
VPIVMAINF	100%		32.8	V	Main Catch Diode peak-inverse voltage (at VOVOFF_MAX)
VPIVMAINC	100%		0.0	V	Output2 Forward Diode peak- inverse voltage (at VDSOP)
VPIVOUT2F	100%		0.0	V	Output2 Catch Diode peak-inverse voltage (at VOVOFF_MAX)
VPIVOUT2C	100%		0.0	V	Bias output rectifier peak-inverse voltage (at VDSOP)
VPIVB					

Hiper-TFS STANDBY SECTI ON (FLYBACK STAGE) ENTER APPLI CATI ON VARI ABLES

VACMIN	85		V	Minimum AC Input Voltage
VACMAX	265		V	Maximum AC Input Voltage
fL	50		Hz	AC Mains Frequency
VO_SB	12.00		V	Output Voltage (at continuous power)
IO_SB	0.83		A	Power Supply Output Current (corresponding to peak power)
IO_SB_PK	0.83			Peak output current
POUT_SB		9.96	W	Continuous Output Power
POUT_SB_TOTAL		10.28	W	Total Standby power (Includes Bias winding power)
POUT_SB_PK		9.96	W	Peak Standby Output Power
n	0.80			Efficiency Estimate at output terminals. Under 0.7 if no better data available
Z	0.50			Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available
tC	3.00		ms	Bridge Rectifier Conduction Time Estimate
ENTER Hiper-TFS STANDBY VARI ABLES				
Select Current Limit	STD	Standard Current Limit		Enter "LOW" for low current limit, "RED" for reduced current limit (sealed adapters), "STD" for standard current limit or "INC" for increased current limit (peak or higher power applications)
ILIM_MIN		0.605	A	Minimum Current Limit
ILIM_TYP		0.650	A	Typical Current Limit
ILIM MAX		0.696	A	Maximum Current Limit

R(EN)		232.0	k-ohms	Enable pin resistor	
fSmin		124000	Hz	Minimum Device Switching Frequency	
$\\|^{\wedge} 2 \mathrm{fmin}$		50.19	$\mathrm{A}^{\wedge} 2 \mathrm{kHz}$	$I^{\wedge} 2 f$ (product of current limit squared and frequency is trimmed for tighter tolerance)	
VOR	100.00	100	V	Reflected Output Voltage (VOR < 135 V Recommended)	
VDS		10	V	Hiper-TFS Standby On State Drain to Source Voltage	
VD_SB		0.7	V	Output Winding Diode Forward Voltage Drop	
KP		1.55		Ripple to Peak Current Ratio (KP < 6)	
KP_TRANSIENT		1.27		Transient Ripple to Peak Current Ratio. Ensure KP_TRANSIENT > 0.25	
ENTER BI AS WI NDI NG VARI ABLES					
VB		16.00	V	Bias Winding Voltage	
IB		20.00	mA	Bias winding Load current	
PB		0.32	W	Bias winding power	
VDB		0.70	V	Bias Winding Diode Forward Voltage Drop	
NB		15.00		Bias Winding Number of Turns	
VZOV		22.00	V	Overvoltage Protection zener diode voltage.	
UVLO VARI ABLES					
RLS		3.92	M-Ohms	Line sense resistor (from Main converter section)	
V_UV_ACTUAL		100	V	Typical DC start-up voltage	
ENTER TRANSFORMER CORE/ CONSTRUCTI ON VARI ABLES					
Core Type	EE16	EE16		Enter Transformer Core	
AE		0.192	$\mathrm{cm}^{\wedge} 2$	Core Effective Cross Sectional Area	
LE		3.5	cm	Core Effective Path Length	
AL		1140	$\mathrm{nH} / \mathrm{T}^{\wedge} 2$	Ungapped Core Effective Inductance	
BW		8.6	mm	Bobbin Physical Winding Width	
M		0	mm	Safety Margin Width (Half the Primary to Secondary Creepage Distance)	
L	3.00	3		Number of Primary Layers	
NS_SB	11	11		Number of Secondary Turns	
DC I NPUT VOLTAGE PARAMETERS					
VMIN_SB		114.01	V	Minimum DC Input Voltage	
VMAX_SB		374.77	V	Maximum DC Input Voltage	
CURRENT WAVEFORM SHAPE PARAMETERS					
DMAX_SB		0.36		Duty Ratio at full load, minimum primary inductance and minimum input voltage	
IAVG		0.12	A	Average Primary Current	
IP_SB		0.6045	A	Minimum Peak Primary Current	
IR_SB		0.6045	A	Primary Ripple Current	
IRMS_SB		0.24	A	Primary RMS Current	
TRANSFORMER PRI MARY DESI GN PARAMETERS					
LP_SB		491.12	uH	Typical Primary Inductance. +/10% to ensure a minimum primary inductance of 446 uH	
LP_TOLERANCE		10	\%	Primary inductance tolerance	
NP_SB		87		Primary Winding Number of Turns	

Note: Main transformer outer limbs were gapped by using a 3M 74 tape in order to avoid the pulse skipping issue. Magnetizing inductance was brought down to 3.4 mH from 9 mH . Refer to main transformer specification section for details.

8 Main Transformer (T1) Specification

8.1 Electrical Diagram

Figure 6 - Main 12 V Transformer (T1) Electrical Diagram.

8.2 Electrical Specifications

Electrical Strength	1 second, 60 Hz, from pins 4-6 to pins 7-12.	3000 VAC
Primary I nductance	Pins 4-6, all other windings open, measured at 100 kHz, $0.4 \mathrm{~V}_{\mathrm{RMS}}$.	$3.4 \mathrm{mH} \pm 10 \%$
Resonant Frequency	Pins 4-6, all other windings open.	$450 \mathrm{kHz}(\mathrm{Min})$.
Primary Leakage I nductance	Pins 4-6, with pins $7-12$ shorted, measured at 100 kHz, $0.4 \mathrm{~V}_{\text {RMS. }}$.	$16 \mu \mathrm{H} \mathrm{max}$

8.3 Materials

Item	Description
[1]	Core Pair: EF25, TDK PC44 material or equivalent, ungapped.
[2]	Bobbin: EF25-Vertical, 12 pins (6/6). Taiwan Shulin Enterprise TF-2554.
[3]	Tape: Polyester Film, 3M 1350F-1 or equivalent, 14.9 mm wide.
[4]	Tape: Polyester Film, 3M 1350F-1 or equivalent, 22 mm wide.
[5]	Copper Foil, 0.005 " thick, $0.7^{\prime \prime}$ wide.
[6]	Tinned Solid Copper Bus Wire, \#20 AWG.
[7]	Triple Insulated Wire, Furukawa Tex-E or equivalent, 26 \#AWG.
[8]	Tape: Polyester Film, 3M 74, 0.5 mil thick, or equivalent. Cut into size: $7.0 \mathrm{~mm} \times 3.5 \mathrm{~mm}$.
[9]	Varnish: Dolph BC-359, or equivalent.

8.4 Build Diagram

Figure 7 - Main Transformer Build Diagram.

Figure 8 - Making Core Gap.

Figure 9 - Transformer Output Foil Construction Drawing.

8.5 Build Instructions

Assembly Step	Winding Instructions
Primary (WDG1)	Starting at pin 2, wind 41T of triple insulated wire (Item [7] in two layers. Finish at pin 6.
Insulation	Insulate using 2 layers of tape (item [3]).
Secondary (WDG2)	Using Items [4], [5], and [6], construct a 250 mm long cuffed foil assembly per Figure 8. Starting at pins 10, 11, and 12, wind 5 turns of foil, finishing at pins 7, 8, and 9.
Insulation	Apply 2 layers of tape (item [3]) for insulation.
Primary (WDG3)	Starting at pin 4, wind 22 turns of triple insulated wire (item [7]) in a single layer, finishing at pin 2.
Insulation	Apply three layers of tape (item [3]) for finish wrap.
Final Assembly	Use 2 pieces of tape item [8] press firmly, evenly on both side legs on 1 core half to create 0.5 mil core gap. (see Figure 8 above).

Note: If without transformer gapping, in this design it has been found there is a highside driver pulse skipping issue. In this design, it happens at >400 VDC input and <3.5 A load on main 12 V channel, when there is a snubber circuit at the main transformer secondary output. Pulse skipping is avoided by gapping outer limbs of the transformer with the help of 0.5 mil thick tape.

Pulse skipping is caused due to drop in VDDH pin voltage. When there is not enough magnetizing current, high side source voltage doesn't reach ground during core reset period and bootstrap diode cannot charge high side VDDH bootstrap capacitor. With insufficient voltage on the VDDH pin, high side driver could skip pulses.

Pulse skipping is not necessarily present in all the designs. Depending on the load levels and snubber values, the conditions to have pulse skipping issue will vary as well.

Pulse skipping can be avoided by doing one of following options:

1. By providing gap on center limb of the transformer in order to reduce the magnetizing inductance (as used in this design).
2. By adding a high side bias winding.
3. Remove the secondary snubber and use high voltage diodes on the secondary.

Option 1 may result in slight efficiency degradation, especially on lighter load. Option 2 should not affect efficiency but it adds transformer cost. In option 3, if a snubber is not used, the output diode needs to have a higher voltage rating. This results in lower efficiency at full load.

9 Output Inductor (L1) Specification

9.1 Electrical Diagram

Figure 10 - Output Inductor Schematic Diagram.

9.2 Electrical Specifications

| Inductance | Pins FL1-FL2, all other windings open, measured at $100 \mathrm{kHz}, 0.4 \mathrm{~V}_{\text {RMs. }}$ | $41 \mu \mathrm{H} \pm 15 \%$ |
| :--- | :--- | :--- | :--- |

9.3 Materials

Item	Description
[1]	Sendust Toroidal Core, 125 $:$ Magnetics, Inc. 77350-A7 or equivalent.
[2]	Magnet wire: \#18 AWG Solderable Double Coated.

10Standby Supply Transformer (T2) Specification

10.1 Electrical Diagram

Figure 11 - Standby Transformer Electrical Diagram.

10.2 Electrical Specifications

Electrical Strength	1 second, 60 Hz , from pins 1-5 to pins 5-10.	3000 VAC
Primary I nductance	Pins 3-5, all other windings open, measured at $100 \mathrm{kHz}, 0.4 \mathrm{~V}_{\text {RMS. }}$	$491 \mu \mathrm{H} \pm 10 \%$
Resonant Frequency	Pins 3-5, all other windings open.	1 MHz (Min.)
Primary Leakage Inductance	Pins $3-5$, with pins $6,7,9,10$ shorted, measured at $100 \mathrm{kHz}, 0.4 \mathrm{~V}_{\text {RMs. }}$	$13 \mu \mathrm{H}$ (Max)

10.3 Materials

Item	Description
[1]	Core: EE16, TDK PC44 material or equivalent, gapped for ALG 96 nH/T².
[2]	Bobbin: EE16, Vertical, 10 pins (5/5). Yh Hwa YW-527-00B.
[3]	Tape: 3 MM 1350 F1 or equivalent, 10.8 mm wide.
[4]	Magnet wire: \#31 AWG, double coated.
[5]	Triple Insulated Wire: Furukawa Tex-E or equivalent, \#24 AWG.
[6]	Varnish: Dolph BC-359, or equivalent.

10.4 Build Diagram

WD4: $2^{\text {nd }}$ primary 27T-\#31AWG

WD3: Bias 15T-2x \#31AWG

WD2: Secondary 11T-\#24AWG_TIW

WD1: $1^{\text {st }}$ primary 60T-\#31AWG

Figure 12 - Build Diagram for Standby Transformer.

10.5 Build Instructions

Assembly Step	Winding I nstructions
Primary (WDG1)	Starting at pin 5, wind 60 T of wire (Item [4] in two layers. Finish at pin 4.
Insulation	Insulate using 2 layers of tape (item [3]).
Secondary (WDG2)	Starting at pins 9 and 10, wind 11 turns of triple insulated wire (item [5]), finishing at pins 6 and 7.
Insulation	Apply 2 layers of tape (item [3]) for insulation.
Primary Bias (WDG3)	Starting at pin 2, wind 15 bifilar turns of wire (item [4]) in a single layer, finishing at pin 1.
Insulation	Apply one turn of tape (item [3]) for insulation.
Primary (WDG4)	Starting at pin 4, wind 27 turns of triple insulated wire (item [8]), finishing at pin 3.
Insulation	Apply three layers of tape (item [3]) for finish wrap.
Final Assembly	Grind core gap to specified inductance coefficient. Assemble bobbin and core halves, secure cores. Dip varnish (item [6]).

11Heat Sink Assemblies

11.1 Primary Heat Sink Sheet Metal

Figure 13 - Primary Heat Sink Sheet Metal Drawing.

11.2 Completed Primary Heat Sink

Figure 14 - Completed Primary Heat Sink.

11.3 Primary Heat Sink Assembly

Figure 15 - Primary Heat Sink Assembly.

11.4 Secondary Heat Sink Sheet Metal

Figure 16 - Secondary Heat Sink Sheet Metal Drawing.

11.5 Completed Secondary Heat Sink

Figure 17 - Completed Secondary Heat Sink.

11.6 Secondary Heat Sink Assembly

Figure 18-Secondary Heat Sink Assembly.

12Performance Measurements

12.1 Efficiency

Figure 19 - Efficiency vs. Output load Percentage, Main + Standby Outputs.

Figure 20 - Main 12 V Output Efficiency vs. Output Power, 380 VDC Input, Standby Output Unloaded.

Figure 21 - Standby Efficiency vs. Load.

Figure 22 - Standby Efficiency vs. Input Voltage, 100\% Load.

12.2 Standby No-Load Input Power

Figure 23 - Standby No-Load Input Power vs. Input Voltage.

12.3 Regulation

Figure 24 - Standby Supply Load Regulation, 380 VDC Input.

Figure 25 - Main Output Load Regulation, 380 VDC Input.

12.4 Waveforms

Figure 26 - Main Output Drain Voltage and Current, Full Load, 380 VDC Input. Upper: $I_{\text {DRAIN }}, 0.5$ A / div. Lower: $\mathrm{V}_{\text {drain }} 200 \mathrm{~V}, 2 \mu \mathrm{~s} / \mathrm{div}$.

Figure 27 - Standby Output Drain Voltage and Current, Full Load, 126 VDC (90 VAC equiv.) Input.
Upper: $I_{\text {Draln }} 0.5 \mathrm{~A} / \mathrm{div}$.
Lower: V ${ }_{\text {DRaIn }} 100 \mathrm{~V}, 10 \mu \mathrm{~s} / \mathrm{div}$.

Figure 28 - Standby Output Drain Voltage and Current, Full load, 380 VDC Input. Upper: $I_{\text {Draln }}, 0.5 \mathrm{~A} / \mathrm{div}$. Lower: V ${ }_{\text {drain }} 200 \mathrm{~V}, 10 \mu \mathrm{~s} / \mathrm{div}$.

12.5 Main Output Diode Peak Reverse Voltage

Figure 29 - Main Output Catch Diode (D6) Reverse Voltage, 380 VDC Input, Full Load, $20 \mathrm{~V}, 1 \mu \mathrm{~s} / \mathrm{div}$.

Figure 31 - Main Output Forward Diode (D7) Reverse Voltage, 380 VDC Input, Full Load, $20 \mathrm{~V}, 1 \mu \mathrm{~s} / \mathrm{div}$.
$\mathrm{PRV}=2.08$ div. $\mathrm{X} 20 \mathrm{~V} / \operatorname{div} .=41.6 \mathrm{~V}$.

Figure 30 - Main Output Catch Diode (D6) Reverse Voltage, 420 VDC Input, Full Load, $20 \mathrm{~V}, 1 \mu \mathrm{~s} / \mathrm{div}$.

Figure 32 - Main Output Forward Diode (D7) Reverse Voltage, 420 VDC Input, Full Load, 20 V , $1 \mu \mathrm{~s} / \mathrm{div}$.
$\mathrm{PRV}=2.2$ div. $\times 20 \mathrm{~V} /$ div. $=44 \mathrm{~V}$.

Figure 33 - Standby Output Rectifier Diode (D16) Reverse Voltage, 380 VDC Input, Full Load, $50 \mathrm{~V}, 2 \mu \mathrm{~s} / \mathrm{div}$.

Figure 34 - Standby Output Rectifier Diode (D16) Reverse Voltage, 420 VDC Input, Full Load, $50 \mathrm{~V}, 2 \mu \mathrm{~S} / \mathrm{div}$.

12.6 Start-up and Hold-up

Figure 35-12 V Main Output Start-up, Full Load, 380 VDC Input, Resistive Load, 5 V , $2 \mathrm{~ms} / \mathrm{div}$.

Figure 37-12 V Aux Output Start-up, 126 VDC Input, Zero Load, $5 \mathrm{~V}, 10 \mathrm{~ms} /$ div.

Figure 38-12 V Aux Output Start-up, 126 VDC Input, Full Load, $5 \mathrm{~V}, 10 \mathrm{~ms} / \mathrm{div}$.

Figure 39-12 V Aux Output Start-up, 380 VDC Input, Zero Load, $5 \mathrm{~V}, 10 \mathrm{~ms} / \mathrm{div}$.

Figure 40-12 V Aux Output Start-up, 380 VDC Input, Full Load, $5 \mathrm{~V}, 10 \mathrm{~ms} / \mathrm{div}$.

Figure 41 - Main Output Hold-up Time, Full Load.
Upper: Vout, $5 \mathrm{~V} / \mathrm{div}$.
Lower: B+ Voltage, $200 \mathrm{~V}, 10 \mathrm{~ms}$ / div.

12.7 Ripple

12.7.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to noise pickup. Details of the probe modification are provided in the figures below.

The 4987BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) $0.1 \mu \mathrm{~F} / 50 \mathrm{~V}$ ceramic type and one (1) $1.0 \mu \mathrm{~F} / 50 \mathrm{~V}$ aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).

Figure 42 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)

Figure 43 - Oscilloscope Probe with Probe Master (www.probemaster.com) 4987A BNC Adapter. (Modified with Wires for Ripple Measurement, and Two Parallel Decoupling Capacitors added)

12.7.2 Ripple Measurement Results

Figure 44 - Ripple, 12 V Main Output, Full Load, 380 VDC Input. 50 mV , 1 ms / div.

Figure 45 - Ripple, 12 V Standby Output, Full Load, 126 VDC Input 50 mV , 1 ms / div.

Figure 46 - Ripple, 12 V Standby Output, Full Load, 380 VDC Input 50 mV , $1 \mathrm{~ms} / \mathrm{div}$.

12.8 Transient Response

In Figures 47-48, and 51-52, data was collected with the oscilloscope set to averaging mode, so that events non-synchronous with the load step (such as high frequency output ripple, are average out, leaving a clear view of the response to the step load change.

Figure 47-12 V Main Output Load Transient Response, 75\% - 100\% - 75\% Load Step, 380 VDC Input.
Upper: I ${ }_{\text {out }} 5$ A / div.
Lower: Vout, $20 \mathrm{mV}, 500 \mu \mathrm{~s} /$ div.

Figure 48-12 V Main Output Load Transient Response, 100% - 180\% - 100\% Load Step, 380 VDC Input. Upper: I ${ }_{\text {out, }} 10$ A / div. Lower: Vout, $20 \mathrm{mV}, 500 \mu \mathrm{~s} / \mathrm{div}$.

Figure 50-12 V Main Output Load Transient Response, 100\% - 3\% Load Step, 380 VDC Input.
Upper: $I_{\text {out }} 5$ A / div.
Lower: Vout, 100 mV , $2 \mathrm{~ms} /$ div.

Figure 51-12 V Standby Output Load Transient Response, 75\%-100\%-75\% Load Step, 126 VDC Input. Upper: I ${ }_{\text {out }} 0.5 \mathrm{~A} / \mathrm{div}$. Lower: V $_{\text {out }}, 20 \mathrm{mV}, 500 \mu \mathrm{~s} / \mathrm{div}$.

Figure 52-12 V Standby Output Load Transient Response, 75\%-100\%-75\% Load Step, 380 VDC Input.
Upper: I Iout, 0.5 A / div.
Lower: $\mathrm{V}_{\text {Out }}, 20 \mathrm{mV}, 500 \mu \mathrm{~s} / \mathrm{div}$.

13Thermal Testing

The test setup for evaluating component temperature with forced air cooling is shown below. A cardboard shroud was constructed to approximate the size of a typical power supply, and fitted with a $12 \mathrm{~V}, 50 \mathrm{~mm}, 0.27 \mathrm{~A}$ fan (Yate Loon D50SH-12C), driven by an external DC supply. The fan was oriented to exhaust from the box. Fan voltage was set to 8 VDC for the measurements shown below. The back side of the box was left open to facilitate measurements with a thermal camera. The main output diodes (D6 and D7) and the output diode snubber resistor (R37) were not accessible to the thermal camera, so these were fitted with \#30 AWG type T thermocouples soldered to the device mounting tabs for thermal measurements, or in the case of the resistor, attached to the resistor body using thermal epoxy. Results are shown in Section 13.2.

Figure 53 - Test Set-up Showing Fan.

13.1 Thermal Pictures

Figure 54 - Standby Transformer T2, Visible Light View.

Figure 56 - Standby Output Rectifier D16, Visible Light View.

Figure 55 - Standby Transformer T2 Thermal Image, Full Load, Room Temperature.

Figure 57 - Standby Output Rectifier D16 Thermal Image, Full Load, Room Temperature.

Figure 58 - Main Output Choke L1, Visible Light View.

Figure 60 - Main Output Transformer T1, Visible Light View.

Figure 59 - Main Output Choke L1 Thermal Image, Full Load, Room Temperature.

Figure 61 - Main Output Transformer T1 Thermal Image, Full Load, Room Temperature.

Figure 62 - HiperTFS-2 IC U6, Visible Light View.

Figure 63 - HiperTFS-2 IC U6 Thermal Image, Full Load, Room Temperature.

13.2 Thermocouple Measurements for Main Output Rectifiers

Position	THM1 (D7)	THM2 (D6)	THM3 (R37)	THM4 (AMB)
Temperature	$63^{\circ} \mathrm{C}$	$64^{\circ} \mathrm{C}$	$62{ }^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$

14 Gain-Phase

Figure 64 - Main Output Control Loop, 380 VDC Input, Full Load. Gain Crossover is at 5.42 kHz , with 54.70 Phase Margin.

15 Revision History

Date	Author	Revision	Description and Changes	Reviewed
12-Nov-13	SS	7.1	Initial Release	Apps \& Mktg
03-Aug-15	KM	7.2	I[dated eSIP Heat Sink Drawing and Brand Style	

Power I ntegrations, I nc.
Tel: +1 4084149200 Fax: +1 4084149201
www.power.com

For the latest updates, visit our website: www.power.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT I NFORMATI ON

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www. power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www. power.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, InnoSwtich, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, FluxLink, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. © Copyright 2015 Power Integrations, Inc.

Power I ntegrations Worldwide Sales Support Locations

WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: usasales@powerint.com

CHI NA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88,
North Caoxi Road,
Shanghai, PRC 200030
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325
e-mail: chinasales@powerint.com

CHI NA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District,
Shenzhen, China, 518057
Phone: +86-755-8672-8689
Fax: +86-755-8672-8690
e-mail: chinasales@powerint.com

GERMANY

Lindwurmstrasse 114
80337, Munich
Germany
Phone: +49-895-527-39110
Fax: +49-895-527-39200
e-mail:
eurosales@powerint.com

INDIA

\#1, $14^{\text {th }}$ Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
indiasales@powerint.com

ITALY

Via Milanese 20, $3^{\text {rd }}$. FI.
20099 Sesto San Giovanni
(MI) Italy

Phone: +39-024-550-8701
Fax: +39-028-928-6009
e-mail:
eurosales@powerint.com

J APAN

Kosei Dai-3 Building
2-12-11, Shin-Yokohama,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail:
japansales@powerint.com

KOREA

RM 602, 6FL
Korea City Air Terminal B/D,

159-6

Samsung-Dong, Kangnam-Gu,
Seoul, 135-728 Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail:
koreasales@powerint.com

SI NGAPORE

51 Newton Road,
\#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
singaporesales@powerint.com

TAI WAN

5F, No. 318, Nei Hu Rd.,
Sec. 1
Nei Hu District
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
taiwansales@powerint.com

UK

Cambridge Semiconductor,
a Power Integrations company
Westbrook Centre, Block 5,
2nd Floor
Milton Road
Cambridge CB4 1YG
Phone: +44 (0) 1223-446483
e-mail: eurosales@power.com

