

Design Example Report

Title	<5 mW No-load Input Power, 2.1 W CV/CC Charger Using LinkZero TM -LP LNK574DG	
Specification	85 VAC – 265 VAC Input; 6 V, 0.35 A Output	
Application	inkZero-LP Reference Design	
Author	Applications Engineering Department	
Document Number	DER-258	
Date	April 29, 2013	
Revision	1.3	

Summary and Features

- Ultra low no-load consumption, <5 mW at 230 VAC
- Primary side CV/CC controller eliminates secondary side control and optocoupler, provides low cost, low part count solution.
- EcoSmart[™] 70% average efficiency, exceeds standards requirement of 67%, and thus meets all existing and proposed harmonized energy efficiency standards including: CECP (China), CEC, EPA, AGO, European Commission
- FEEDBACK pin reference voltage varies with output load to provide excellent cross regulation as well as cable drop compensation.
- Meets EN550022 and CISPR-22 Class B conducted EMI with 10 dB margin.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

> Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com

Table of Contents

1 Introduction	3
2 Power Supply Specification	5
3 Circuit Diagram	6
4 Circuit Description	7
4.1 Input Rectification and Filtering	7
4.2 LinkZero-LP Primary	7
4.3 Design of External Bias for LinkZero-LP	7
4.4 Primary Clamp and Transformer Construction	7
4.5 Output Rectification	8
4.6 Ultra-low No-load Input Power	8
5 PCB Layout	9
6 Bill of Materials	10
7 Transformer Specification	11
7.1 Electrical Diagram	11
7.2 Electrical Specifications	11
7.3 Materials	11
7.4 Transformer Build Diagram	12
7.5 Transformer Construction	12
8 Transformer Design Spreadsheet	13
9 Performance Data	15
9.1 Efficiency	15
9.2 Active Mode CEC Measurement Data	16
9.2.1 USA Energy Independence and Security Act 2007	17
9.2.2 ENERGY STAR EPS Version 2.0	17
9.3 No-load Input Power	18
9.4 Available Standby Output Power	19
9.5 Line and Load Regulation	20
10 Thermal Performance	21
11 Waveforms	22
11.1 Drain Voltage and Current, Normal Operation	22
11.2 Output Voltage Start-Up Profile	22
11.3 Drain Voltage and Current Start-Up Profile	23
11.4 Load Transient Response	24
11.5 Output Ripple Measurements	25
11.5.1 Ripple Measurement Technique	25
11.5.2 Measurement Results	
12 Conducted EMI	27
13 Statistical Data for the Design	29
14 Revision History	

Important Note:

Although this board was designed to satisfy safety isolation requirements, it has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the power supply.

1 Introduction

This report describes a universal input, 6 V, 350 mA flyback power supply using a LNK574DG device from the LinkZero-LP family of ICs. It contains the complete specification of the power supply, a detailed circuit diagram, the entire bill of materials required to build the supply, extensive documentation of the power transformer, along with test data and oscillographs of important electrical waveforms.

Figure 1 – Populated Circuit Board Photographs.

2 Power Supply Specification

The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

Description	Symbol	Min	Тур	Max	Units	Comment
Input						
Voltage	V _{IN}	85		265	VAC	2 Wire – no P.E.
Frequency	f _{LINE}	47	50/60	64	Hz	
No-load Input Power				5	mW	230 VAC
Output						
Output Voltage	V _{OUT}		6		V	See V-I Curves, Figure 9, for limits
Output Ripple Voltage				200	mV	20 MHz bandwidth
Output Current	Ι _{ουτ}		350		mA	
Total Output Power						
Continuous Output Power	Pout		2.1		W	
Efficiency						
Average efficiency	η	67	70		%	
Environmental						
Conducted EMI		Mee	ts CISPR2	22B / EN58	5015B	
Safety		Desigr	ned to mee Cla	et IEC950, ass II	UL1950	
	DM	0.5			kV	1.2/50 μs surge, IEC 1000-4-5, Series Impedance:
Surge	СМ	1			kV	Differential Mode: 2Ω Common Mode: 12Ω
Ambient Temperature	T _{AMB}	-5		40	°C	Free convection, sea level

3 Circuit Diagram

Figure 2 – Schematic.

4 Circuit Description

This flyback power supply was designed around the LNK574DG, U1 in Figure 2. The output voltage is sensed through the bias winding and fed back to U1 through resistor divider R3 and R4. That feedback is used by U1 to maintain Constant Voltage (CV) regulation of the output.

4.1 Input Rectification and Filtering

Diodes D1-D4 rectifies the AC input which is then filtered by capacitors C1 and C2. Inductor L1, C1 and C2 form a pi (π) filter that attenuates differential mode conducted EMI. Resistor R1 provides high frequency damping. Shielding techniques (E-ShieldTM) were used in the construction of T1 to reduce common mode EMI displacement currents. This filter arrangement, the proprietary E-Shield techniques together with the IC frequency jitter function provide excellent EMI performance even without a Y capacitor or clamp network on the primary side.

4.2 LinkZero-LP Primary

The power supply utilizes simplified bias winding voltage feedback, enabled by LNK574DG ON/OFF control. The voltage across C5 is determined by the FEEDBACK (FB) pin reference voltage and the resistor divider formed by R3 and R4. The FB pin reference voltage, which varies with load, is set to 1.36 V at no load and gradually increases to 1.70 V at full load to provide good output load regulation as well as cable drop compensation. In the CV region, U1 enables/disables switching cycles to maintain the FB pin reference voltage. Diode D6 and low cost ceramic capacitor C5 provide rectification and filtering of the primary feedback winding waveform. At increased loads, beyond the maximum power threshold, the IC transitions into the Constant Current (CC) region. In this region, the FB pin voltage begins to reduce as the power supply output voltage falls. In order to maintain a constant output current, the internal oscillator frequency is reduced in this region until it reaches typically 48% of the starting frequency. When the FB pin voltage drops below the auto-restart threshold (typically 0.9 V on the FB pin), the power supply enters the auto-restart mode. In this mode, the power supply will turn off for 1.2 s and then turn back on for 170 ms. The auto-restart function reduces the average output current during an output short-circuit condition.

4.3 Design of External Bias for LinkZero-LP

Diode D5 and R2 form the external bias circuit and although this is not necessary for the operation of the LinkZero-LP family, its use can help to significantly improve the average efficiency of a power supply, especially at 230 VAC. During steady-state operation the external bias circuit supplies the IC bias current. Resistor R2 is chosen such that the bias winding supplies 200 μ A to 300 μ A into the BP pin.

4.4 Primary Clamp and Transformer Construction

A clampless primary circuit is achieved due to the very tight tolerance current limit trimming techniques used in manufacturing the LNK574DG, plus the transformer construction techniques used. Peak drain voltage is therefore limited to typically less than

550 V at 265 VAC – providing significant margin to the 700 V maximum drain voltage (BV_{DSS}).

4.5 Output Rectification

Output rectification is provided by diode D7 and filtering is provided by capacitor C7. Resistor R5 and capacitor C6 provide high frequency filtering for improved EMI.

4.6 Ultra-low No-load Input Power

The LinkZero-LP has a built in "power-down" (PD) mode wherein when 160 consecutive switching cycles have been skipped, the chip goes into the PD mode and inhibits switching and in addition, dramatically reduces its internal power consumption. The PD mode occurs when the output load has reduced to about 0.3% of full load. During PD mode the internal circuitry of the device completely shuts down and thus the capacitor connected to BYPASS (BP) pin C3 is discharged from 5.8 V. The controller wakes up to check output load conditions at a frequency determined by the user through the choice of the BP pin capacitor value. Once the BP pin voltage reaches 3 V, U1 powers up again and resumes switching. The no-load power consumption can be reduced further with a higher value for BP pin capacitor C3. If the load increases such that fewer than 160 cycles were skipped, the IC resumes normal operation.

When U1 is in PD mode, the time taken for the BP pin voltage to discharge to VBPPDRESET (~3 V) determines the duration of the PD off-time. The duration of the PD off-time also determines the ripple on the output voltage. The total energy stored in C5 and C3 determine the PD off-time (and also the output ripple in PD mode). The typical choice for C5 is between 100 nF and 330 nF and for C3 is between 47 nF and 470 nF.

5 PCB Layout

Figure 3 – Printed Circuit Board Layout (Dimensions in Inches).

Item	Qty	Ref Des	Description	Manufacturer P/N	Manufacturer
1	2	C1 C2	3.3 µF, 400 V, Electrolytic, (8 x 11.5)	TAQ2G3R3MK0811MLL3	Taicon
2	1	C3	220 nF, 50 V, Ceramic, X7R, 0805	GRM21BR71H224KA01L	Murata
3	1	C4	1000 pF, 50 V, Ceramic, X7R, 0805	ECJ-2VB1H102K	Panasonic
4	1	C5	220 nF, 50 V, Ceramic, X7R, 1206	ECJ-3YB1H224K	Panasonic
5	1	C6	220 pF, 100 V, Ceramic, X7R, 0805	ECJ-2VB2A221K	Panasonic
6	1	C7	330 $\mu F,$ 16 V, Electrolytic, Very Low ESR, 72 M $\Omega,$ (8 x 11.5)	EKZE160ELL331MHB5D	Nippon Chemi-Con
7	4	D1 D2 D3 D4	1000 V, 1 A, Rectifier, DO-41	1N4007-E3/54	Vishay
8	1	D5	75 V, 300 mA, Fast Switching, DO-35	1N4148TR	Vishay
9	1	D6	200 V, 1 A, Rectifier, Glass Passivated, DO-213AA (MELF)	DL4003-13-F	Diodes Inc
10	1	D7	50 V, 1 A, Schottky, DO-214AC	SS15-TP	Micro commercial
11	1	J3	6 ft, 26 AWG, 2.1 mm connector (custom)	3PH323A0	Anam
12	1	L1	1 mH, 0.15 A, Ferrite Core	SBCP-47HY102B	Tokin
13	1	R1	4.7 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ472V	Panasonic
14	1	R2	82 kΩ, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ823V	Panasonic
15	1	R3	113 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF1133V	Panasonic
16	1	R4	9.09 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF9091V	Panasonic
17	1	R5	5.1 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ5R1V	Panasonic
19	1	RF1	10 Ω, 2 W, Fusible/Flame Proof Wire Wound CRF253-4 10R V		Vitrohm
20	1	T1	Bobbin, EF16, Horizontal, 9 pins (5x4)	EF16HP09-QO	TDK
21	1	U1	LinkZero-LP, SO-8	LNK574DG	Power Integrations

6 Bill of Materials

Note - All parts are RoHS compliant

7 Transformer Specification

7.1 Electrical Diagram

Figure 4 – Transformer Electrical Diagram.

7.2 Electrical Specifications

Electrical Strength	1 second, 60 Hz, from pins 1-5 to pins 6-9.	3000 VAC
Primary Inductance	Pins 5-4, all other windings open, measured at 100 kHz, 0.4 V _{RMS} .	2.75 mH, ±10%
Resonant Frequency	Pins 5-4, all other windings open.	520 kHz (Min.)
Primary Leakage Inductance	Pins 4-5, with pins 7-9 shorted, measured at 100 kHz, 0.4 V_{RMS} .	50 μH (Max.)

7.3 Materials

Item	Description
[1]	Core: PC44 EF16-Z, TDK or equivalent gapped for AL of 235.8 nH/T ²
[2]	Bobbin: EE16X16H, Horizontal 9 pin
[3]	Magnet Wire: #35 AWG
[4]	Magnet Wire: #29 AWG
[5]	Triple Insulated Wire: #28 AWG
[6]	Tape: 3M 1298 Polyester Film, 2.0 mils thick, 9.8 mm wide
[7]	Varnish

7.4 Transformer Build Diagram

Figure 5 – Transformer Build Diagram.

7.5 Transformer Construction

Bobbin Preparation	Primary pin side of the bobbin orients to the left hand side.	
WD#1	Start on pin 2, wind 27 bifilar turns of item [3] from left to right. Wind with tight	
Feedback	tension across entire bobbin evenly. Finish on pin 1.	
Insulation	1 layer of tape [6] for insulation	
WD#2 Primary	Start on pin 4, wind 54 turns of item [3] from left to right. After finishing the first layer, placing one layer of tape [6]. Continue to wind the wire from right to left with another 54 turns. Finish on pin 5.	
Insulation	1 layer of tape [6] for insulation.	
WD #3 Balance Shield	Start on any pin on the secondary temporarily. Wind 9 trifilar turns of item [4], wind from right to left with tight tension uniformly, and connect end of winding to pin 5. Cut out wire connected to secondary side and leave this end not connected	
Insulation	1 layer of tape [6] for insulation.	
WD #4	Start at pin 9, wind 9 bifilar turns of item [5] from right to left. Wind uniformly. After	
Secondary	finishing the 9 th turn, bring the wire back and finish it on pin 8.	
Insulation	3 layers of tape [6] for insulation.	
Grind Core	Grind the core to get 2.75 mH. Secure the core with tape.	
Secure and Varnish	Secure the core with tape. Dip varnish for 3 minutes.	

8 Transformer Design Spreadsheet

LinkZero-LP 052410;					
Rev.1.0; Copyright					
Power Integrations	INDUT	INFO		LINUT	LINKZERO-LP 052410_Kev1-0.XIS; LINKZERO-LP
			OUIPUI	UNIT	Flyback Transformer Design Spreadsneet
		5	[
VACMIN	85			Volts	Minimum AC Input Voltage
VACMAX	265			Volts	Maximum AC Input Voltage
fL	50			Hertz	AC Mains Frequency
VO	6.00			Volts cable (For CV/CC designs enter typical CV tolera limit)	
Ю	0.32			Amps	Power Supply Output Current (For CV/CC designs enter typical CC tolerance limit)
PO			1.92	Watts	Output Power (VO x IO + dissipation in output cable)
Feedback Type	BIAS		Bias Winding		Choose 'BIAS' for Bias winding feedback and 'OPTO' for Optocoupler feedback from the 'Feedback Type' drop down box at the top of this spreadsheet
Clampless design	YES		Clamples s		Choose 'YES' from the 'Clampless Design' drop down box at the top of this spreadsheet for a clampless design. Choose 'NO' to add an external clamp circuit. Clampless design lowers the total cost of the power supply
Ν	0.70		0.7		Efficiency Estimate at output terminals. For CV only designs enter 0.7 if no better data available
Z	0.45		0.45		Loss Allocation Factor (Secondary side losses / Total losses)
tC	2.90			mSecond s	Bridge Rectifier Conduction Time Estimate
CIN	10.00			uFarads	Input Capacitance
Input Rectification Type	F		F		Choose H for Half Wave Rectifier and F for Full Wave Rectification from the 'Rectification' drop down box at the top of this spreadsheet
ENTER LinkZero-LP VA	RIABLES				
LinkZero-LP	Auto		LNK574		LinkZero-LP device.
Chosen Device		LNK57 4			
ILIMITMIN			0.126	Amps	Minimum Current Limit
ILIMITMAX			0.146	Amps	Maximum Current Limit
fSmin			93000	Hertz	Minimum Device Switching Frequency
I^2fMIN			1664.64	A^2Hz	I^2f Minimum value (product of current limit squared and frequency is trimmed for tighter tolerance)
I^2fTYP			1849.6	A^2Hz	I [^] 2f typical value (product of current limit squared and frequency is trimmed for tighter tolerance)
VOR	78.00		78	Volts	Reflected Output Voltage
VDS			10	Volts	LinkZero-LP on-state Drain to Source Voltage
VD			0.5	Volts	Output Winding Diode Forward Voltage Drop
KP			1.60		Ripple to Peak Current Ratio (0.9 <krp<1.0 :<br="">1.0<kdp<6.0)< td=""></kdp<6.0)<></krp<1.0>
ENTER TRANSFORMER	R CORE/C	ONSTRUC	TION VARIA	ABLES	
Core Type	EF16		EF16		User-Selected transformer core
Core		EF16	DODDIN	P/N:	PC40EF16-Z
BODDIN			RORRIN	P/N:	EF16_BUBBIN
AE			0.201	cm/2	Core Effective Cross Sectional Area
			3.70		Ungenned Core Effective Inductores
RW/			100	mm	Bobbin Physical Winding Width
M			0	mm	Safety Margin Width (Half the Primary to Secondary
1			2		Creepage Distance)
NS	٩		<u>ک</u> ۵		Number of Secondary Turns
NB	0		28		Number of Bias winding turns

VB 19.50 Voits Bits Winding Voitage R1 113.00 k-ohms Upper Resistor divider component between bias winding and FB pin of LinkGro-LP R2 8.87 k-ohms Events RBP 86.6 k-ohms Events CFB 680.00 pF Pin resistor (and/exe-LP CBD 220.00 nF BP incapacitor MAX 37 Mainum DC Input Voltage VMN 033 Amp Awarage Pinary Pinary Inductance VMN 01280 Amps Pinary Inductance. IP 0.1280 Amps Pinary Inductance. IP 0.1280 Amps Pinary Inductance. IP 22724 uHenries Typical Pinary Inductance. IP 108						
R1 113.00 k-ohm Upper Resistor in the resistor divider component between base winding and FB pin of LinkZeroL-P R2 8.87 k-ohm Ever Resistor in the resistor divider component between base winding and FB pin of LinkZeroL-P RBP 8.6.6 k-ohms Optional BP pin resistor (divider component between base winding and FB pin of LinkZeroL-P CFB 686.000 pF FB pin resistor (brinve noise sensitivity) CBP 20.000 nF FB pin resistor (brinve noise sensitivity) CBP 20.000 nF FB pin resistor (brinve noise sensitivity) CBP 20.000 nF FB pin resistor (brinve noise sensitivity) CBP 20.000 nF FB pin resistor (brinve noise sensitivity) CBP 20.000 nF FB pin resistor (brinve noise sensitivity) CBP 20.1200 nF PB pin resistor (brinve noise sensitivity) CBR 0.03 Amps Awarage Primary Current CURENT WAVEPORM SHAPE PARAMETERS Maximum Duty Cycle Awarage Primary Current IAVG 0.1260 Amps Primary Rinde Current IRMS 0.1260 Amps Primary Rinde Current IP 10.8 Primary Rinde Current Primary Rinde Current IP 10.8 Primary Rinde Current	VB			19.50	Volts	Bias Winding Voltage
R2 Image: Set of the set of the set of the set of the deside of the provided of the set of t	R1			113.00	k-ohms	Upper Resistor in the resistor divider component between bias wiinding and FB pin of LinkZero-LP
RBP 86.6 k-ohms Optional PP in resistor (connected between BP pin and bias winding) to improve efficiency CFB 680.00 pF FB pin resistor (improve noise sensitivity) CBP 620.00 nF BP pin capacitor Recommended Bias 11N4003 nF BP pin capacitor DC INPUT VOLTAGE PARAMETERS 103 Volts Maximum DC Input Voltage VMAX 0.37 Volts Maximum DC uput Voltage CURRENT WAVEFORM SHAPE PARAMETERS Current Maximum Duty Cycle DMAX 0.37 Maximum DC input Voltage IP 0.1280 Amps Nermap Primary Ringe Current IR 0.1280 Amps Primary RMS Current IRAS 0.05 Amps Primary Wolds Network of Turns ALG 2.234 nH/T*2 Gapped Core Effective Inductance MP 108 Primary Wolds Network of Turns ALG 2.34 nH/T*2 Gapped Core Effective Inductance BM 1832 Gause ACF ILV Density for Core Loss Curves (0.5 X Peak to Peak)	R2			8.87	k-ohms	Lower Resistor in the resistor divider component between bias wiinding and FB pin of LinkZero-LP
CFB 680.00 pF FB pin resistor (Improve noise sensitivity) CBP 220.00 nF BP pin capacitor Recommended Bias 1N4003 Place this diode on the return leg of the bias winding for optimal EMI. DC INPUT VOLTAGE PARAMETERS 103 Volts Maximum DC Input Voltage VMAX 375 Volts Maximum DC Input Voltage CURRENT WAVEFORM SHAPE PARAMETERS 0.37 Maximum DU Cycle DMAX 0.1280 Amps Primary Ripe Current IP 0.1280 Amps Primary Ripe Current IR 0.1280 Amps Primary Inductance tolerance IR 0.1280 Amps Primary Inductance tolerance IR 0.1280 Amps Primary Inductance tolerance IP 108 Primary Vinding Number of Turns ALG ALG 234 nH/TY2 Gapped Core Effective Inductance IP 1832 Gauss Pack/turno Interestive Mox Core BAC 916 Gauss ACF Fux Density for Core Lass Curves (0.5 X Peak to Peak to Peak) <t< td=""><td>RBP</td><td></td><td></td><td>86.6</td><td>k-ohms</td><td>Optional BP pin resistor (connected between BP pin and bias winidng) to improve efficiency</td></t<>	RBP			86.6	k-ohms	Optional BP pin resistor (connected between BP pin and bias winidng) to improve efficiency
CBP 220.00 nF BP pin capacitor optimal EML Recommended Bias Diode 1N4003 Piace this diode on the return leg of the bias winding for optimal EML DC INPUT VOLTAGE PARAMETERS 103 Volts Maximum DC Input Voltage VMAX 375 Volts Maximum DLity Cycle DMAX 0.37 Maximum Duty Cycle IAVG 0.03 Amps Average Primary Current IP 0.1260 Amps Minimum Peak Primary Current IRMS 0.1260 Amps Primary Ripple Current IP_TOLERANCE 108 Primary Ripple Current Primary Ripple Current ALG 234 nH/Tr2 Gause Maximum Quertaing Flux Density, BM-2000 is recommended BAC 916 Gause Age Three Density, BM-2000 is recommended Ur 1637 Relative Permeability of Ungapped Core LG	CFB			680.00	pF	FB pin resistor (Improve noise sensitivity)
Recommended Bias IN4003 Place this diade on the return leg of the bias winding for optimal EMI. DC INPUT VOLTAGE PARAMETERS 103 Volts Maximum DC Input Voltage VMAX 375 Volts Maximum DC Input Voltage CURRENT WAVEFORM SHAPE PARAMETERS 0.37 Maximum Duty Cycle GURRENT WAVEFORM SHAPE PARAMETERS 0.33 Amps DMAX 0.1260 Amps Minimum Dealt Primary Current IP 0.1260 Amps Primary RMS Current IRMS 0.1260 Amps Primary RMS Current TRANSFORMER PRIMARY DESIGN PARAMETERS Typical Primary Inductance: 4/- 10%. LP 2724 uHenries Typical Primary Inductance: 4/- 10%. LP 108 Primary Winding Number of Turns ALG ALG 1032 Gauss Recentive Correctors (JS X Peak to Peak) BAC 916 Gauss Relative Permeability of Ungapped Corre ILG 0.14 mm Estimated Tatal Insulation Thickness (JS X Peak to Peak) BWE 2.0 mm Maximum Order and promase (JS X Peak to Peak) </td <td>CBP</td> <td></td> <td></td> <td>220.00</td> <td>nF</td> <td>BP pin capacitor</td>	CBP			220.00	nF	BP pin capacitor
DC INPUT VOLTAGE PÅRAMETERS Optimiser VMIN 103 Volts Minimum DC Input Voltage VMAX 375 Volts Maximum DC Input Voltage CURRENT WAVEFORM SHAPE PARAMETERS Maximum Duty Cycle Maximum Duty Cycle DMAX 0.37 Amps Maximum Pask Primary Current IP 0.1260 Amps Primary RDV Cycle IRMS 0.05 Amps Primary RMS Current IRMS 0.06 Amps Primary RMS Current TRANSFORMER PRIMARY DESIGN PARAMETERS Primary Inductance tolerance Primary Inductance tolerance LP 108 Primary inductance tolerance Maximum Operating Flux Density, BM<2000 is recommended	Recommended Bias			1N4003		Place this diode on the return leg of the bias winding for optimal FMI
TMIN Total 103 Volts Minimum DC Input Voltage CURRENT WAVEFORM SHAPE PARAMETERS 375 Volts Maximum DL Input Voltage DMAX 0.37 Maximum DLity Cycle DMAX 0.37 Maximum Duty Cycle IAVG 0.37 Amps IP 0.1260 Amps IR 0.1260 Amps IR 0.1260 Amps IR 0.1260 Amps IP DLP DESIGA PARAMETERS LP TOLERANCE 108 P/TOLERANCE 108 Primary Rinductance IP 108 Primary Winding Number of Turns ALG 234 nH/T+2 Gapped Core Effective Inductance BM 1832 Gauss Maximum Operating Flux Density, BM-2000 is recommended Gauss 4 6 Gauss Maximum Operating Flux Density, BM-2000 is recommended BAC 916 Gauss Maximum Operating Flux Density, BM-2000 is recommended Neakinum Acutering totage Core Ur 1637 </td <td>DC INPUT VOLTAGE P</td> <td>ARAMETE</td> <td>RS</td> <td></td> <td></td> <td></td>	DC INPUT VOLTAGE P	ARAMETE	RS			
TMAX 375 Voits Maximum DC Input Voitage CURRENT WAVEFORM SHAPE PARAMETERS Maximum Duty Cycle DMAX 0.03 Amps Average Primary Current IAVG 0.03 Amps Average Primary Current IP 0.1260 Amps Primary RMS Current IR 0.1260 Amps Primary RMS Current TRANSFORMER PRIMARY DESIGN PARAMETERS Typical Primary Inductance. +/- 10% LP_TOLERANCE 10 % Primary Inductance. +/- 10% LP_TOLERANCE 10 % Primary Inductance. +/- 10% LP_TOLERANCE 10 % Primary Minding Number of Turns ALG 234 nH/TV2 Sagped Core Efficitive Inductance. BM 1832 Gauss Flax Density for Core Loss Curves (0.5 X Peak to Peak) ur 1637 Relative Permeability of Ungapped Core LG 0.10 mm Marufacuting tolgeracing problems - please verify with mag	VMIN			103	Volts	Minimum DC Input Voltage
CURRENT WAVEFORM SHAPE PARAMETERS Maximum Duty Cycle DMAX 0.37 Amps Average Primary Current IP 0.1260 Amps Minimum Duty Cycle IRM 0.1260 Amps Minimum Deak Primary Current IRM 0.1260 Amps Primary RMS Current IRMS 0.05 Amps Primary Inductance. +/- 10% LP CURRANCE 10 % Primary Inductance Iolerance LP, TOLERANCE 10 % Primary Inductance Iolerance NP 108 Primary Winding Number of Turns ALG 234 nH/T^2 Gapped Core Effective Inductance BM 1832 Gauss Relative Permeability of Ungapped Core ur 1637 Relative Permeability of Ungapped Core ur 1635 mm Maximum Primary Wire Diameter including insulation DD 0.185 mm Estimated Total Insulation Thickness (Lo 2 1 firm thickness) IR 0.04 mm Estimated Total Insulation Thickness (Lo 2 1 firm thickness) DIA 0.145	VMAX			375	Volts	Maximum DC Input Voltage
DMAX 0.37 Maximum Duty Cycle IAVG 0.03 Amps Average Primary Current IP 0.1260 Amps Mininum Peak Primary Ripple Current IRMS 0.1260 Amps Primary Ripple Current IRMS 0.05 Amps Primary Ripple Current TRANSFORMER PRIMARY DESIGN PARAMETERS Typical Primary Inductance. 4/- 10% Primary Inductance tolerance UP 2724 UHenries Typical Primary Inductance tolerance NP 108 Primary Minding Number of Turns ALG 234 nH/T^2 Gapped Core Eflective Inductance BM 1832 Gauss Maximum Operating Flux Density, BM-2000 is recommended BAC 916 Gauss AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) Ur 1637 Relative Permeability of Ungapped Core LG 0.10 mm Maximum Turnary Wire Diameter including insulation INS 0.04 mm Effective Bobbin Widh magnetics vendor. Increase ILG > 0.1 mm INS 0.04 mm Bare conductor diameter <t< td=""><td>CURRENT WAVEFORM</td><td>SHAPE P</td><td>ARAMET</td><td>ERS</td><td></td><td></td></t<>	CURRENT WAVEFORM	SHAPE P	ARAMET	ERS		
IAVG 0.03 Amps Average Primary Current IP 0.1260 Amps Primary Ripple Current IRR 0.05 Amps Primary RMS Current IRMS 0.05 Amps Primary RMS Current IRMS 0.05 Amps Primary RMS Current IRMS 0.05 Amps Primary MMS Current IP 2724 utlenries Typical Primary Inductance tolerance IP 108 Primary Mundine tot Turns ALG 234 nH/T*2 Gapped Core Effective Inductance BM 1832 Gauss Racimum Oragening Flux Density, BM<2000 is recommended	DMAX			0.37		Maximum Duty Cycle
IP 0.1260 Amps Minimum Peak Primary Rupple Current IR 0.1260 Amps Primary Rupple Current IRMS 0.05 Amps Primary Rupple Current IRMSSORMER PRIMARY DESIGN PARAMETERS Typical Primary Inductance. +/- 10% LP 2724 UHenries Typical Primary Inductance to encompare the second sec	IAVG			0.03	Amps	Average Primary Current
IR 0.1260 Amps Primary Ripple Current IRMS 0.05 Amps Primary RMS Current TRANSFORMER PRIMARY DESIGN PARAMETERS Typical Primary Inductance. 1/- 10% LP_TOLERANCE 10 % NP 108 Primary Minding Number of Turns ALG 234 nH/T^2 Gapped Core Effective Inductance BM 1832 Gauss Maximum Operating Flux Density, BM-2000 is recommended BAC 916 Gauss AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) ur 1637 Relative Permeability of Ungapped Core LG 0.10 mm magnetics vendor. Increase LG > 0.1 mm (increase NS, decrease VOR, bigger Core) BWE 20 mm Effective Bobion Width OD 0.185 mm Maximum Primary Wire Gauge (Rounded to next smaller standard AWG value) DIA 0.04 mm Bare conductor diameter CM 32 Cmils Bare conductor diameter CMA 10/6 676 mp ser conductor diameter DIA 0.145	IP			0.1260	Amps	Minimum Peak Primary Current
IRMS 0.05 Amps Primary RMS Current TRANSFORMER PRIMARY DESIGN PARAMETERS 10 % Primary Inductance tolerance LP_TOLERANCE 10 % Primary Inductance tolerance NP 108 Primary Inductance tolerance ALG 234 nH/T^2 Gapped Core Effective Inductance BM 1832 Gauss Maximum Operating Flux Density, BM-2000 is recommended BAC 916 Gauss AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) ur 1637 Relative Permeability of Ungapped Core LG 0.10 mm manufacturing tolerancing problems - please verify with magnetics vendor. Increase LG > 0.1 mm (increase NS, decrease VOR, bigger Core) BWE 20 mm Effective Bobbin Witch OD 0.145 mm Maximum Primary Wire Diameter including insulation INS 0.145 mm Bare conductor diameter AWG 335 AWG Primary Wire Gauge (Rounded to next smaller standard AWG alue) CMA Info 676 Cmils/A CMA 0.53 Amps Secondary Current INS 0.62 Amps Secondary Current Gauss 1.51 Amps Secondary Current CMA <td< td=""><td>IR</td><td></td><td></td><td>0.1260</td><td>Amps</td><td>Primary Ripple Current</td></td<>	IR			0.1260	Amps	Primary Ripple Current
TRANSFORMER PRIMARY DESIGN PARAMETERS LP_TOLERANCE 10 2724 ulterries Typical Primary Inductance. +/- 10% LP_TOLERANCE 108 Primary Inductance tolerance NP 108 Primary Winding Number of Turns ALG 234 nH/T^2 Gapped Core Effective Inductance BM 1832 Gauss Maximum Operating Flux Density, BM-2000 is recommended BAC 916 Gauss AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) ur 1637 Relative Permeability of Ungapped Core LG 0.10 mm manufacturing tolerancing problems - please verify with magnetics vendor. Increase LG > 0.1 mm (increase NS, decrease VOR, bigger Core) BWE 20 mm Effective Bobin Width OD 0.185 mm Maximum Primary Wire Diameter including insulation INS 0.04 mm Effective Bobin Width OD 0.145 mm Bare conductor dimeter AWG 35 AWG AWG avalue) CAN DeCREASE CMA < 500 (decrease Lprimary layers), increase NS, use smaller Core)	IRMS			0.05	Amps	Primary RMS Current
LP 2724 UHenrics Typical Primary Inductance. +/- 10% LP_TOLERANCE 10 % Primary Inductance tolerance NP 108 Primary Inductance tolerance ALG 234 nH/T^2 Gapped Core Effective Inductance BM 1832 Gauss Maximum Operating Flux Density, BM<2000 is recommended	TRANSFORMER PRIMA	RY DESIG	SN PARAN	IETERS		
LP_TOLERANCE 10 % Primary inductance tolerance NP 108 108 Primary Winding Number of Turns ALG 234 nH/Tr2 Gapea Core Effective Inductance BM 1832 Gauss Maximum Operating Flux Density, BM<2000 is recommended	LP			2724	uHenries	Typical Primary Inductance. +/- 10%
NP Image: NP Image: NP ALG 234 nH/T^2 Gapped Core Effective Inductance BM 1832 Gauss Maximum Operating Flux Density, BM<2000 is recommended BAC 916 Gauss AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) ur 1637 Relative Permeability of Ungapped Core LG 0.10 mm III Info. Gap sizes below 0.1 mm may cause manufacturing tolerancing problems - please verify with magnetics vendor. Increase LG > 0.1 mm (increase NS, decrease VOR, bigger Core) BWE 20 mm Effective Bobbin With OD 0.185 mm Maximum Primary Wire Diameter including insulation INS 0.04 mm Estimated Total Insulation Thickness (= 2 * film thickness) DIA 0.145 mm Bare conductor diameter AWG 35 AWG Primary Wire Gauge (Rounded to next smaller standard AWG and info CMA Info 676 Cmils/A CMA Info 676 Cmils/A IRIPPLE 0.53 Amps LIRPPLE 0.53 Amps Secondary RMS current Secondary RMS Ripple Current ISRS 0.29 Amps ODS 124 Cmils Secondary Max numu Outside Diameter for	LP_TOLERANCE			10	%	Primary inductance tolerance
ALG Capped Core Effective Inductance BM 1832 Gauss Gauss Maximum Operating Flux Density, BM<2000 is recommended BAC 916 Gauss AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) ur 1637 Relative Perneability of Ungapped Core LG 0.10 manufacturing tolerancing problems - please verify with manufacturing tolerancing for problems - please verify with manufacturing tolerancing for planeter including insulation NKE 0.145 mm Harcine Stresse Core Maximum Planeter GMA 10.145 mm Bare conductor effective area in circular mils CMA 1nfo 676 Cmils/A	NP			108		Primary Winding Number of Turns
BM 1832 Gauss Maximum Operating Flux Density, BM<2000 is recommended BAC 916 Gauss AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) ur 1637 Relative Permeability of Ungapped Core LG 0.10 mm Relative Permeability of Ungapped Core BWE 20 mm Effective Permeability of Ungapped Core) BWE 20 mm Effective Bobbin Width OD 0.185 mm Maximum Primary Wire Diameter including insulation INS 0.04 mm Estimated Total Insulation Thickness (= 2* film thickness) DIA 0.145 mm Bare conductor diameter AWG 35 AWG Primary Wire Gauge (Rounded to next smaller standard AWG value) CMA 1nfo 676 Cmils Bare conductor effective area in circular mils CMA 1nfo 676 Cmils AMD ECREASE CMA < 500 (decrease L(primary layers), increase NS, use smaller Core) TRANSFORMER SECONDARY DESIGN PARAMETERS 151 Amps Secondary RMS Current IRIPPLE 0.52 Amps Secondary RMS Current ISRMS 0.62 Amps Secondary RMS Current IRIPPLE 0.53 Amps Output Capacitor RMS Ripple Current ODS <td>ALG</td> <td></td> <td></td> <td>234</td> <td>nH/T^2</td> <td>Gapped Core Effective Inductance</td>	ALG			234	nH/T^2	Gapped Core Effective Inductance
BAC 916 Gauss AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) ur 1637 Relative Permeability of Ungapped Core LG 0.10 mm Relative Permeability of Ungapped Core LG 0.10 mm III Info. Gays Sizes below 0.1 mm may cause manufacturing tolerancing problems - please verify with magnetics vendor. Increase LG > 0.1 mm (increase NS, decrease VOR, bigger Core) BWE 20 mm Effective Bobbin Width OD 0.185 mm Maximum Prinary Wire Diameter including insulation INS 0.04 mm Estimated Total Insulation Thickness (= 2 * film thickness) DIA 0.145 mm Bare conductor diameter AWG 35 AWG Primary Wire Gauge (Rounded to next smaller standard AWG value) CMA 1nfo 676 Cmils/A Bare conductor effective area in circular mils CMA 1nfo 676 Cmils/A CAN DECREASE CMA < 500 (decrease L(primary layers), increase Ns, use smaller Core) TRANSFORMER SECONDARY DESIGN PARAMETERS 1.51 Amps Secondary RMS Current ISRMS 0.62 Amps Secondary RMS Current ISRMS 0.62 Amps Secondary Current CMS 1.24 Cmils Secondary Mins Cauge (Rounded up to next larger standard AWG value)<	ВМ			1832	Gauss	Maximum Operating Flux Density, BM<2000 is recommended
ur 1637 Relative Permeability of Ungapped Core LG 0.10 mm Relative Permeability of Ungapped Core LG 0.10 mm manufacturing tolerancing problems - please verify with magnetics vendor. Increase LG > 0.1 mm (increase NS, decrease VOR, bigger Core) BWE 20 mm Effective Bobbin Width OD 0.185 mm Maximum Primary Wire Diameter including insulation INS 0.04 mm Estimated Total Insulation Thickness (= 2 * film thickness) DIA 0.145 mm Bare conductor diameter AWG 35 AWG Primary Wire Gauge (Rounded to next smaller standard AWG value) CM 32 Cmils Bare conductor diameter Info 676 Cmils/A CAN DECREASE CMA < 500 (decrease L(primary layers), increase NS, use smaller Core)	BAC			916	Gauss	AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)
LG 0.10 mm !!! Info. Gap sizes below 0.1 mm may cause manufacturing tolerancing problems - please verify with magnetics vendor. Increase LG > 0.1 mm (increase NS, decrease VOR,bigger Core) BWE 20 mm Effective Bobbin With Maximum Primary Wire Diameter including insulation DD 0.185 mm Maximum Primary Wire Diameter including insulation INS 0.04 mm Estimated Total Insulation Thickness (= 2* film thickness) DIA 0.145 mm Bare conductor diameter AWG 35 AWG Primary Wire Gauge (Rounded to next smaller standard AWG value) CM 32 Cmils Bare conductor effective area in circular mils CMA Info 676 Cmils/A Cmils/A CAN DECREASE CMA < 500 (decrease L(primary layers), increase NS, use smaller Core) TRANSFORMER SECONDARY DESIGN PARAMETERS Umped parameters Ispendent Lumped parameters 1.51 Amps Peak Secondary Current ISP 1.51 Amps Secondary RMS Current ISPNS 0.62 Amps Secondary Current ISP 1.51 Amps Output Capacitor RMS Ripple Current CMS 0.29 AWG Secondary Minimum Bare Conductor Diameter ODS 0.21 Mm Secondary Minimum Bare Conductor Diameter <	ur			1637		Relative Permeability of Ungapped Core
BWE 20 mm Effective Bobin Width OD 0.185 mm Maximum Primary Wire Diameter including insulation INS 0.04 mm Estimated Total Insulation Thickness (= 2 * film thickness) DIA 0.145 mm Bare conductor diameter AWG 35 AWG Primary Wire Gauge (Rounded to next smaller standard AWG value) CM 32 Cmils Bare conductor effective area in circular mils CMA Info 676 Cmils/A CAN DECREASE CMA < 500 (decrease L(primary layers), increase NS, use smaller Core)	LG			0.10	mm	III Info. Gap sizes below 0.1 mm may cause manufacturing tolerancing problems - please verify with magnetics vendor. Increase LG > 0.1 mm (increase NS, deprese VOR bigger Corp.)
DNL 20 Inim Delicities Boold Within OD 0.185 mm Maximum Primary Wire Diameter including insulation INS 0.04 mm Estimated Total Insulation Thickness (= 2 * film thickness) DIA 0.145 mm Bare conductor diameter AWG 35 AWG Primary Wire Gauge (Rounded to next smaller standard AWG value) CM 32 Cmils Bare conductor effective area in circular mils CMA Info 676 Cmils/A mp CAN DECREASE CMA < 500 (decrease L(primary layers), increase NS, use smaller Core)	BW/E			20	mm	Effective Robbin Width
INS 0.04 mm Bakantain Tinday Ti				0.185	mm	Maximum Primary Wire Diameter including insulation
DIA 0.145 mm Bare conductor diameter AWG 35 AWG Primary Wire Gauge (Rounded to next smaller standard AWG value) CM 32 Cmils Bare conductor effective area in circular mils CMA Info 676 Cmils/A CAN DECREASE CMA < 500 (decrease L(primary layers), increase NS, use smaller Core)	INS			0.04	mm	Estimated Total Insulation Thickness (= 2 * film thickness)
AWG 35 AWG Primary Wire Gauge (Rounded to next smaller standard AWG value) CM 32 Cmils Bare conductor effective area in circular mils CMA Info 676 Cmils/A CAN DECREASE CMA < 500 (decrease L(primary layers), increase NS, use smaller Core)				0 145	mm	Bare conductor diameter
CM 32 Cmils Bare conductor effective area in circular mils CMA Info 676 Cmils/A CAN DECREASE CMA < 500 (decrease L(primary layers), increase NS, use smaller Core)	AWG			35	AWG	Primary Wire Gauge (Rounded to next smaller standard
CMAInfo32Cmils/A mpDate conductor enective area in circular milsCMAInfo676Cmils/A mpCAN DECREASE CMA < 500 (decrease L(primary layers),increase NS,use smaller Core)TRANSFORMER SECONDARY DESIGN PARAMETERSLumped parameters1.51AmpsPeak Secondary CurrentISP1.51AmpsSecondary RMS CurrentIRIPPLE0.53AmpsOutput Capacitor RMS Ripple CurrentCMS124CmilsSecondary Bare Conductor minimum circular milsAWGS29AWGSecondary Wire Gauge (Rounded up to next larger standard AWG value)DIAS0.29mmSecondary Maximum Outside Diameter for Triple Insulated WireINSS0.41mmMaximum Secondary Insulation Wall ThicknessVDRAIN-VoltsPeak Drain Voltage is highly dependent on Transformer capacitance and leakage inductance. Please verify this on the bench and ensure that it is below 650 V to allow 50 V margin for transformer variation.PIVS37VoltsOutput Rectifier Maximum Peak Inverse Voltage	CM			22	Cmila	Awg value)
CMAInfo676Cmms ACMA DECICACE CMARCOUCLASE Contracts of decrease Epinitially layers), increase NS, use smaller Core)TRANSFORMER SECONDARY DESIGN PARAMETERSLumped parametersISP1.51AmpsPeak Secondary CurrentISRMS0.62AmpsSecondary RMS CurrentIRIPPLE0.53AmpsOutput Capacitor RMS Ripple CurrentCMS124CmilsSecondary Bare Conductor minimum circular milsAWGS29AWGSecondary Wire Gauge (Rounded up to next larger standard AWG value)DIAS0.29mmSecondary Minimum Bare Conductor DiameterODS1.11mmSecondary Maximum Outside Diameter for Triple Insulated WireINSS0.41mmMaximum Secondary Insulation Wall ThicknessVDRAINVoltsPeak Drain Voltage is highly dependent on Transformer capacitance and leakage inductance. Please verify this on the bench and ensure that it is below 650 V to allow 50 V margin for transformer variation.PIVS37VoltsOutput Rectifier Maximum Peak Inverse Voltage	CIVI			32	Cmils/A	Bare conductor effective area in circular fills CAN DECREASE CMA < 500 (decrease L (primary)
TRANSFORMER SECONDARY DESIGN PARAMETERS Lumped parameters ISP 1.51 Amps Peak Secondary Current ISRMS 0.62 Amps Secondary RMS Current IRIPPLE 0.53 Amps Output Capacitor RMS Ripple Current CMS 124 Cmils Secondary Bare Conductor minimum circular mils AWGS 29 AWG Secondary Wire Gauge (Rounded up to next larger standard AWG value) DIAS 0.29 mm Secondary Minimum Bare Conductor Diameter ODS 1.11 mm Secondary Maximum Outside Diameter for Triple Insulated Wire INSS 0.41 mm Maximum Secondary Insulation Wall Thickness VDRAIN - Volts Peak Drain Voltage is highly dependent on Transformer capacitance and leakage inductance. Please verify this on the bench and ensure that it is below 650 V to allow 50 V margin for transformer variation. PIVS 37 Volts Output Rectifier Maximum Peak Inverse Voltage	CMA		Info	676	mp	lavers).increase NS.use smaller Core)
Lumped parameters ISP 1.51 Amps Peak Secondary Current ISRMS 0.62 Amps Secondary RMS Current IRIPPLE 0.53 Amps Output Capacitor RMS Ripple Current CMS 124 Cmils Secondary Bare Conductor minimum circular mils AWGS 29 AWG Secondary Wire Gauge (Rounded up to next larger standard AWG value) DIAS 0.29 mm Secondary Minimum Bare Conductor Diameter ODS 1.11 mm Secondary Maximum Outside Diameter for Triple Insulated Wire INSS 0.41 mm Maximum Secondary Insulation Wall Thickness VOLTAGE STRESS PARAMETERS - Volts Peak Drain Voltage is highly dependent on Transformer capacitance and leakage inductance. Please verify this on the bench and ensure that it is below 650 V to allow 50 V margin for transformer variation. PIVS 37 Volts Output Rectifier Maximum Peak Inverse Voltage	TRANSFORMER SECO	NDARY DE	SIGN PA	RAMETERS		
ISP1.51AmpsPeak Secondary CurrentISRMS0.62AmpsSecondary RMS CurrentIRIPPLE0.53AmpsOutput Capacitor RMS Ripple CurrentCMS124CmilsSecondary Bare Conductor minimum circular milsAWGS29AWGSecondary Wire Gauge (Rounded up to next larger standard AWG value)DIAS0.29mmSecondary Minimum Bare Conductor DiameterODS1.11mmSecondary Maximum Outside Diameter for Triple Insulated WireINSS0.41mmMaximum Secondary Insulation Wall ThicknessVDRAIN-VoltsPeak Drain Voltage is highly dependent on Transformer capacitance and leakage inductance. Please verify this on the bench and ensure that it is below 650 V to allow 50 V margin for transformer variation.PIVS37VoltsOutput Rectifier Maximum Peak Inverse Voltage	Lumped parameters					
ISRMS 0.62 Amps Secondary RMS Current IRIPPLE 0.53 Amps Output Capacitor RMS Ripple Current CMS 124 Cmils Secondary Bare Conductor minimum circular mils AWGS 29 AWG Secondary Wire Gauge (Rounded up to next larger standard AWG value) DIAS 0.29 mm Secondary Minimum Bare Conductor Diameter ODS 1.11 mm Secondary Maximum Outside Diameter for Triple Insulated Wire INSS 0.41 mm Maximum Secondary Insulation Wall Thickness VOLTAGE STRESS PARAMETERS - Volts Peak Drain Voltage is highly dependent on Transformer capacitance and leakage inductance. Please verify this on the bench and ensure that it is below 650 V to allow 50 V margin for transformer variation. PIVS 37 Volts Output Rectifier Maximum Peak Inverse Voltage	ISP			1.51	Amps	Peak Secondary Current
IRIPPLE 0.53 Amps Output Capacitor RMS Ripple Current CMS 124 Cmils Secondary Bare Conductor minimum circular mils AWGS 29 AWG Secondary Wire Gauge (Rounded up to next larger standard AWG value) DIAS 0.29 mm Secondary Minimum Bare Conductor Diameter ODS 1.11 mm Secondary Maximum Outside Diameter for Triple Insulated Wire INSS 0.41 mm Maximum Secondary Insulation Wall Thickness VOLTAGE STRESS PARAMETERS - Volts Peak Drain Voltage is highly dependent on Transformer capacitance and leakage inductance. Please verify this on the bench and ensure that it is below 650 V to allow 50 V margin for transformer variation. PIVS 37 Volts Output Rectifier Maximum Peak Inverse Voltage	ISRMS			0.62	Amps	Secondary RMS Current
CMS 124 Cmils Secondary Bare Conductor minimum circular mils AWGS 29 AWG Secondary Wire Gauge (Rounded up to next larger standard AWG value) DIAS 0.29 mm Secondary Minimum Bare Conductor Diameter ODS 1.11 mm Secondary Maximum Outside Diameter for Triple Insulated Wire INSS 0.41 mm Maximum Secondary Insulation Wall Thickness VOLTAGE STRESS PARAMETERS Peak Drain Voltage is highly dependent on Transformer capacitance and leakage inductance. Please verify this on the bench and ensure that it is below 650 V to allow 50 V margin for transformer variation. PIVS 37 Volts Output Rectifier Maximum Peak Inverse Voltage	IRIPPLE			0.53	Amps	Output Capacitor RMS Ripple Current
AWGS 29 AWG Secondary Wire Gauge (Rounded up to next larger standard AWG value) DIAS 0.29 mm Secondary Minimum Bare Conductor Diameter ODS 1.11 mm Secondary Maximum Outside Diameter for Triple Insulated Wire INSS 0.41 mm Maximum Secondary Insulation Wall Thickness VOLTAGE STRESS PARAMETERS 0.41 mm Maximum Secondary Insulation Wall Thickness VDRAIN - Volts Peak Drain Voltage is highly dependent on Transformer capacitance and leakage inductance. Please verify this on the bench and ensure that it is below 650 V to allow 50 V margin for transformer variation. PIVS 37 Volts Output Rectifier Maximum Peak Inverse Voltage	CMS			124	Cmils	Secondary Bare Conductor minimum circular mils
DIAS 0.29 mm Secondary Minimum Bare Conductor Diameter ODS 1.11 mm Secondary Maximum Outside Diameter for Triple Insulated Wire INSS 0.41 mm Maximum Secondary Insulation Wall Thickness VOLTAGE STRESS PARAMETERS Peak Drain Voltage is highly dependent on Transformer capacitance and leakage inductance. Please verify this on the bench and ensure that it is below 650 V to allow 50 V margin for transformer variation. PIVS 37 Volts Output Rectifier Maximum Peak Inverse Voltage	AWGS			29	AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)
ODS 1.11 mm Secondary Maximum Outside Diameter for Triple Insulated Wire INSS 0.41 mm Maximum Secondary Insulation Wall Thickness VOLTAGE STRESS PARAMETERS Peak Drain Voltage is highly dependent on Transformer capacitance and leakage inductance. Please verify this on the bench and ensure that it is below 650 V to allow 50 V margin for transformer variation. PIVS 37 Volts Output Rectifier Maximum Peak Inverse Voltage	DIAS			0.29	mm	Secondary Minimum Bare Conductor Diameter
INSS 0.41 mm Maximum Secondary Insulation Wall Thickness VOLTAGE STRESS PARAMETERS Peak Drain Voltage is highly dependent on Transformer capacitance and leakage inductance. Please verify this on the bench and ensure that it is below 650 V to allow 50 V margin for transformer variation. PIVS 37 Volts Output Rectifier Maximum Peak Inverse Voltage	ODS			1.11	mm	Secondary Maximum Outside Diameter for Triple
VOLTAGE STRESS PARAMETERS Peak Drain Voltage is highly dependent on Transformer capacitance and leakage inductance. Please verify this on the bench and ensure that it is below 650 V to allow 50 V margin for transformer variation. PIVS 37 Volts Output Rectifier Maximum Peak Inverse Voltage	INSS			0.41	mm	Maximum Secondary Insulation Wall Thickness
VDRAIN - Volts Peak Drain Voltage is highly dependent on Transformer capacitance and leakage inductance. Please verify this on the bench and ensure that it is below 650 V to allow 50 V margin for transformer variation. PIVS 37 Volts Output Rectifier Maximum Peak Inverse Voltage	VOLTAGE STRESS PAR	RAMETER	S			
PIVS 37 Volts Output Rectifier Maximum Peak Inverse Voltage	VDRAIN			-	Volts	Peak Drain Voltage is highly dependent on Transformer capacitance and leakage inductance. Please verify this on the bench and ensure that it is below 650 V to allow 50 V margin for transformer variation.
	PIVS			37	Volts	Output Rectifier Maximum Peak Inverse Voltage

9 Performance Data

The ON/OFF control scheme employed by LinkZero-LP helps to yield virtually constant efficiency across the 25% to 100% load range required for compliance with EPA, CEC, CECP and AGO energy efficiency standards for external power supplies (EPS). This performance is automatic with ON/OFF control. There are no special burst modes that require the designer to consider specific thresholds within the load range in order to achieve compliance with global energy efficiency standards.

All measurements performed at room temperature, 50 Hz input frequency.

9.1 Efficiency

Figure 6 – Efficiency vs. Output Current, Room Temperature, 60 Hz.

Percent of Full Load	Efficier	ncy (%)
	115 VAC	230 VAC
25	74.9	68.9
50	74.6	70.0
75	73.7	70.9
100	72.9	70.2
Average	74.0	70.0
US EISA (2007) requirement	5	7
ENERGY STAR 2.0 requirement	6	7

9.2 Active Mode CEC Measurement Data

The external power supply requirements below all require meeting active mode efficiency and no-load input power limits. Minimum active mode efficiency is defined as the average efficiency of 25, 50, 75 and 100% of output current (based on the nameplate output current rating).

For adapters that are single input voltage only then the measurement is made at the rated single nominal input voltage (115 VAC or 230 VAC), for universal input adapters the measurement is made at both nominal input voltages (115 VAC and 230 VAC).

To meet the standard the measured average efficiency (or efficiencies for universal input supplies) must be greater than or equal to the efficiency specified by the standard.

The test method can be found here:

http://www.energystar.gov/ia/partners/prod_	_development/downloads/power_	_supplies/EP
SupplyEffic TestMethod 0804.pdf		

For the latest up to date information please visit the PI Green Room:

http://www.powerint.com/greenroom/regulations.htm

9.2.1 USA Energy Independence and Security Act 2007

This legislation mandates all single output single output adapters, including those provided with products, manufactured on or after July 1st, 2008 must meet minimum active mode efficiency and no load input power limits.

Active Mode Efficiency Standard Models

Nameplate Output (Po)	Minimum Efficiency in Active Mode of Operation
< 1 W	$0.5 \times P_{O}$
\geq 1 W to \leq 51 W	$0.09 \times \ln (P_0) + 0.5$
> 51 W	0.85

In = natural logarithm

No-load Energy Consumption

Nameplate Output (Po)	Maximum Power for No-load AC-DC EPS		
All	\leq 0.5 W		

This requirement supersedes the legislation from individual US States (for example CEC in California).

9.2.2 ENERGY STAR EPS Version 2.0

This specification takes effect on November 1st, 2008. Active Mode Efficiency Standard Models

Nameplate Output (Po) Minimum Efficiency in Active Mode of Oper		
≤ 1 W	$0.48 \times P_{O} + 0.14$	
$>$ 1 W to \leq 49 W	0.0626 × In (P _o) + 0.622	
> 49 W	0.87	

In = natural logarithm

Active Mode Efficiency Low Voltage Models (V_O<6 V and $I_O \ge 550$ mA)

Nameplate Output (Po)	Minimum Efficiency in Active Mode of Operation
≤ 1 W	0.497 × P ₀ + 0.067
$>$ 1 W to \leq 49 W	0.075 × ln (P _o) + 0.561
> 49 W	0.86

In = natural logarithm

No-load Energy Consumption (both models)

Nameplate Output (Po)	Maximum Power for No-load AC-DC EPS	
0 to < 50 W	\leq 0.3 W	
\geq 50 W to \leq 250 W	\leq 0.5 W	

9.3 No-load Input Power

Figure 7 – No-load Input Power vs. Input Line Voltage, Room Temperature, 50 Hz.

9.4 Available Standby Output Power

The chart below shows the available output power vs. line voltage for an input power of 0.3 W, 0.5 W, 1 W and 2 W.

Figure 8 – Available Output Power for 0.2 W, 0.5 W, 1 W and 2 W Input Power.

9.5 Line and Load Regulation

Figure 9 – Load and Line Regulation, Room Temperature.

10 Thermal Performance

Temperature measurements of key components were taken using T-type thermocouples. The thermocouples were soldered directly to a SOURCE pin of the LNK574DG device and to the cathode of the output rectifier D7. The thermocouples were glued to the external core and winding surfaces of transformer T1.

ltom	Temperature °C		
item	85 VAC	265 VAC	
Ambient Inside Box*	51.0	51.0	
LNK574DG	72.0	90.0	
Transformer	70.0	73.0	
Output Diode	63.0	67.0	

*To simulate operation inside sealed enclosure at 40 °C external ambient.

These results show that all the parts in the board have thermal margin to run at 50 $^{\rm o}{\rm C}$ ambient.

11 Waveforms

11.1 Drain Voltage and Current, Normal Operation

11.2 Output Voltage Start-Up Profile

Start-up into full resistive load and no-load were both verified. An 18 Ω resistor was used for the load, to maintain a 0.35 A under steady-state conditions.

Figure 13 – Start-Up Profile, 230 VAC. Fast Trace is at No-load. Slower Trace is at Maximum Load. 1 V, 5 ms / div.

11.3 Drain Voltage and Current Start-Up Profile

Figure 15 – 265 VAC Input and Maximum Load. Upper: V_{DRAIN} , 200 V / div. Lower: I_{DRAIN}, 0.1 A, 1 ms / div.

11.4 Load Transient Response

	2010/07/22 11:39:17		NORM:100kS/s	100ms/div	
	Stopped	T.		(100ms/div)	
					CH1: OFF
					5V/div 10:1
		+ + +			DC 0.00V
				1	CH2: OFF
					200V/div 100:1
			. : ,∕™		DC 0V
٩Ļ	Viet and the second second	N .	Contraction of the local division of the loc		CH3: ON
					200mV/div 10:1
				1	AC
	1 1				CH4: ON
				1	200mV/div 1:1
					DC 0.002V

					Record Length
					Main: 100K
					Zoom: 2K
				1	Filter
т		- jaaraan jaaraan ja	بشميدهم المراجع		Smoothing: ON
					BW: 20MHZ
					rigger
					Mode: NURMHL
4⊑					Type. EDGE
÷					Source. CH4 j
]

Figure 17 – Transient Response, 230 VAC, 2 mA to 350 mA to 2 mA. Upper: V_{OUT} 1 V / div. Lower: I_{OUT} 0.2 A, 10 ms / div.

Figure 19 – Transient Response, 230 VAC, 170 mA to 262 mA to 170 mA. Upper: V_{OUT} 0.2 V / div. Lower: I_{OUT} 0.2 A, 10 ms / div.

11.5 Output Ripple Measurements

11.5.1 Ripple Measurement Technique

A modified oscilloscope test probe was used to take output ripple measurements, in order to reduce the pickup of spurious signals. Using the probe adapter pictured below, the output ripple was measured with a 1 μ F electrolytic, and a 0.1 μ F ceramic capacitor connected as shown.

Figure 20 – Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed).

11.5.2 Measurement Results

The maximum voltage ripple at the output terminals of the power supply was measured as 80 mV, well below 200 mV specification limit.

Figure 22 – Ripple, 115 VAC, Full Load. $20 \ \mu s$, 50 mV / div.

Figure 24 – Ripple, 265 VAC, Full Load. 100 μs, 50 mV / div.

12 Conducted EMI

Conducted emissions tests were performed at 115 VAC and 230 VAC at maximum load. Measurements were taken with an Artificial Hand connected to a load resistor. EMI of line and neutral were scanned into one picture and the load resistance was adjusted for maximum power output.

Composite EN55022B / CISPR22B conducted limits are shown. In all cases there was excellent (~10 dB) margin.

Figure 25 – Conducted EMI at 115 VAC, Artificial Hand, 6.2 V, 0.362 A.

Figure 26 - Conducted EMI at 230 VAC, Artificial Hand, 6.05 V, 0.373 A.

13 Statistical Data for the Design

The following is some statistical data collected from 50 DER-258 design boards to demonstrate the repeatability and variation of certain measurements over a relatively large sample size, line voltage and temperature.

Figure 27 – Cold Temperature Regulation. CVCC Response Measured at -5 °C and 90 VAC.

Figure 29 – High Ambient Regulation. CVCC Response Measured at 40 °C and 90 VAC.

14 Revision History

Date	Author	Revision	Description & changes	Reviewed
07-Dec-10	PL	1.2	Initial Release	Apps and Mktg
29-Apr-13	KM	1.3	Updated Board Photos	

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2013 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 *e-mail: usasales @powerint.com*

CHINA (SHANGHAI)

Rm 1601/1610, Tower 1, Kerry Everbright City No. 218 Tianmu Road West, Shanghai, P.R.C. 200070 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 *e-mail: chinasales* @powerint.com

CHINA (SHENZHEN)

3rd Floor, Block A, Zhongtou International Business Center, No. 1061, Xiang Mei Rd, FuTian District, ShenZhen, China, 518040 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 *e-mail: chinasales @powerint.com*

GERMANY

Lindwurmstrasse 114 80337, Munich Germany Phone: +49-895-527-39110 Fax: +49-895-527-39200 *e-mail: eurosales@powerint.com*

INDIA #1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 *e-mail: indiasales@powerint.com*

ITALY Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 Fax: +39-028-928-6009 *e-mail: eurosales*@powerint.com

JAPAN

Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 *e-mail: japansales* @powerint.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 *e-mail: koreasales @powerint.com*

SINGAPORE

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 *e-mail:* singaporesales@powerint.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 *e-mail:* taiwansales @powerint.com

EUROPE HQ

1st Floor, St. James's House East Street, Farnham Surrey GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 *e-mail: eurosales* @powerint.com

APPLICATIONS HOTLINE

World Wide +1-408-414-9660

APPLICATIONS FAX World Wide +1-408-414-9760

