

DESIGN EXAMPLE REPORT

Title	Non-isolated 14 W LED Driver Using TNY279GN					
Specification	195 VAC – 265 VAC Input 20 V, 0.7 A CV/CC Output					
Application	LED Lighting					
Author	Power Integrations Applications Group					
Document Number	DER-173					
Date	April 4, 2008					
Revision	1.2					

Summary and Features

- High efficiency >85%
- Integrated TinySwitch-III Safety/Reliability features:
 - Accurate (+5%), auto-recovering, hysteretic thermal shutdown function maintains safe PCB temperatures under all conditions
 - Auto-restart protects against output short circuit and open loop fault conditions
 - 3.2 mm creepage on package enables reliable operation in high humidity and high pollution environments
- BP/M capacitor value selects MOSFET current limit for greater design flexibility
- Tightly toleranced I2f parameter (-10%, +12%) reduces system cost:
 - Increases MOSFET and magnetics power delivery
 - · Reduces overload power, which lowers output diode and capacitor costs

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at <u>www.powerint.com</u>.

Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com

Table of Contents

1	Int	roduction	3
2	Po	wer Supply Specification	4
3	Sc	hematic	5
С	ircuit D	escription	6
	3.1	Input Rectification and Filtering	6
	3.2	TNY279GN Operation	6
	3.3	Output Rectification and Filtering	7
	3.4	Feedback and Output Voltage Regulation	7
	3.5	Peak Primary Current Limit Selection	7
4	Bill	of Materials.	8
5	Tra	ansformer Specification	9
	5.1	Electrical Diagram	9
	5.2	Mechanical Diagram	9
	5.3	Electrical Specifications	9
	5.4	Materials	10
	5.5	Transformer Construction	10
6	Tra	ansformer Spreadsheet	11
7	Pe	rformance Data	14
	7.1	Output Characteristic	14
	7.2	No-Load Input Power	15
	7.3	Efficiency	16
	7.4	Load and Line Regulation	17
8	Wa	aveforms	18
	8.1	Drain Voltage and Current, Normal Operation	18
	8.2	Drain Voltage and Current Start-up Profile	18
	8.3	Output Voltage Start-up Profile	19
9	Ou	tput Ripple Measurements	20
	9.1	Ripple Measurement Technique	20
	9.1	.1 Measurement results	21
1() Th	ermal Performance	22
1	1 Co	nducted EMI	23
12	2 Re	vision History	24

Important Note:

Although this PSU is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This engineering report describes a non-isolated 14 W output and high-line input voltage range (195 VAC–265 VAC) power supply utilizing the TNY279GN for an LED lighting application.

The LED array and enclosure were designed to provide safety isolation to the end user. Therefore the output of this design is not electrically isolated from the AC input.

This document contains the complete specification of the power supply, a detailed circuit diagram, the entire bill of materials required to build the supply, the transformer design, the test data, and the oscillographs of the power supply's most important electrical waveforms.

Figure 1 – Photographs of Power Supply. (L = 80 mm; W = 16 mm; H = 17 mm including bottom side SMD components)

2 Power Supply Specification

Description	Symbol	Min	Тур	Мах	Units	Comment
Input						
Voltage	V _{IN}	195		265	VAC	2 Wire – no P.E.
Frequency	f _{LINE}	47	50/60	64	Hz	
Output						
Output Voltage 1	V _{OUT1}	18	20	21	V	-10%, +5%
Output Ripple Voltage 1	V _{RIPPLE1}			600	mV	20 MHz bandwidth
Continuous load Current 1	I _{OUT1}	650	700	750	mA	+/-7%
Output Power						
Continuous Output Power	POUT		14		W	
Efficiency						
Full load	η	85			%	Measured at P _{OUT} , 25 °C, 230V AC
Environmental						
Ambient Temperature	T _{AMB}	0		75	°C	Free convection, sea level

3 Schematic

Figure 2 – Schematic.

Circuit Description

This flyback power supply was designed around the TNY279GN (U1 in Figure 2). It is a Constant Voltage Constant Current (CV/CC) power supply for driving LED arrays.

3.1 Input Rectification and Filtering

Diode bridge module BR1 rectifies the AC input. Capacitors C1 and C2 filter the rectified DC. Inductor L1 and capacitors C1 and C2 form a pi filter that attenuates differentialmode conducted EMI. R1 is a damping resistor that reduces resonant ringing between C1, C2, and L1. Fuse F1 provides protection against catastrophic failure (such as a shorted bridge diode) on the primary side.

3.2 TNY279GN Operation

The TNY279GN device (U1) integrates an oscillator, a switch controller, startup and protection circuitry, and a power MOSFET, all on one monolithic IC.

One side of the power transformer (T1) primary winding is connected to the positive leg of C2, and the other side is connected to the DRAIN pin of U1. At the start of a switching cycle, the controller turns the MOSFET on, and current ramps up in the primary winding, causing energy to be stored in the transformer's core. When the current reaches the limit threshold, the controller turns the MOSFET off.

Due to the phasing of the transformer windings and the orientation of the output diode, the stored energy induces a voltage across the secondary winding, which forward biases the output diodes D2 and D3, and causes the stored energy to be delivered to the output capacitor C6. When the MOSFET turns off, the leakage inductance of the transformer induces a voltage spike on the drain node. The amplitude of the voltage spike is limited by a simple clamp network consisting of blocking diode D1, transient voltage suppressor VR1, capacitor C3, and resistor R3.

Using ON/OFF control, U1 skips switching cycles to regulate the output voltage, based on feedback to its EN/UV pin. The EN/UV pin current is sampled, just prior to each switching cycle, to determine if that switching cycle should be enabled or disabled. If the current out of the EN/UV pin is less than 115 μ A, the next switching cycle begins, and is terminated when the current through the MOSFET reaches the internal current limit threshold. To evenly spread switching cycles and prevent group pulsing, the EN/UV pin threshold current is modulated between 115 μ A and 75 μ A, based on the state during the previous cycle. A state machine within the controller adjusts the MOSFET current limit threshold to one of four levels, depending on the load being demanded from the supply. As the load on the supply drops, the current limit is reduced. This ensures the effective switching frequency stays above the audible range until the transformer flux density is low. Using the standard production technique of dip varnishing for the transformer essentially eliminates the audible noise.

3.3 Output Rectification and Filtering

Diodes D2 and D3 rectify the output of T1. Output voltage ripple was minimized by using a low ESR capacitor for C6. Capacitor C9 is a ceramic disk capacitor used to reduce both conducted as well as radiated EMI.

3.4 Feedback and Output Voltage Regulation

The constant voltage (CV) characteristic provided by Zener diode VR2 regulates the output voltage to approximately 21 V at no-load.

The constant current (CC) characteristic is achieved by directly sensing the load current. The shunt regulator IC (U3) generates an accurate voltage reference which is divided down by R9, R8 and R8A to 0.07 V at the inverting input of op-amp U2. This improves efficiency by providing low drop-voltage sensing using the output current. Capacitor C7 and resistor R6 provide loop compensation. The load (LED) current is sensed by resistor R7. At the programmed current, the voltage across R7 exceeds the reference voltage causing the op-amp output to rise. This forward biases D4 driving the base of Q1 which pulls current out of the EN/UV pin of U1. Resistor R10 provides the supply current for U3.

3.5 Peak Primary Current Limit Selection

The value of the capacitor (C4) between the BP/M pin and the SOURCE pins allows the power supply designer to select the current limit of U1. The designer can change the current limit of the MOSFET by simply changing C4's capacitance to one of three choices: 0.1 μ F, 1 μ F, or 10 μ F. These values correspond to three MOSFET current limits; standard, reduced, and increased, respectively.

Standard mode is the normal choice for enclosed adapter applications. However, the high ambient temperature requirement (75 °C) for this design uses the reduced current limit, which corresponds to a 1 μ F capacitor for C4. This maximizes U1's efficiency, lowers conduction losses, and reduces its temperature rise.

Using a 10 μ F capacitor for C4 (increased current limit) raises the MOSFET current limit and extends the power capability of the IC. This is for higher power applications that do not have the thermal constraints of an enclosed adapter, or to supply short-duration, peak load demands. (See the TinySwitch-III data sheet for more details.)

4 Bill of Materials

Item	Qty	Part Ref	Description	Mfg	Mfg Part Number
1	1	BR1	600 V, 0.5 A, Bridge Rectifier, SMD, TO-269AA(MBS)	Vishay	MB6S
2	2	C1, C2	10 μF, 400 V, Electrolytic, Low ESR, 79 mA, (10 x 12.5), 105C	Ltec	TYD2GM100G13O
3	1	C3	2.2 nF, 1 kV, Disc Ceramic	Panasonic	ECKA3A222KBP
4	1	C4	1 µF, 50 V, Ceramic, X7R, 0805	Panasonic	ECJ-2YB1H105K
5	1	C6	220 uF, 25 V, Electrolytic, (8 x 10.5), SMD, 105C	Rubycon	25TZV220M8X10.5
6	1	C7	220 nF, 25 V, Ceramic, X7R, 0805	Panasonic	ECJ-2YB1E224K
7	1	C8	47 µF, 25 V, Electrolytic, 105C	Nippon Chemicon	KMG series
8	1	C9	1.0 nF, 200V, 1206, 5%	Walsin	1206102J201CT
9	1	D1	1000 V, 1 A, Fast Recovery, 120 ns, SMA	Vishay	BYG21M
10	2	D2, D3	100 V, 3 A, Schottky, SMC	Vishay	30BQ100
11	1	D4	75 V, 0.15 A, Fast Switching, 4 ns, MELF	Diode Inc.	LL4148-13
12	1	L1	800 uH, 0.15 A, 6 X 8, Drum choke	Prismatic	26801
13	1	R1	1.2 kΩ R, 5%, 1/4 W, Metal Film, 1206	Panasonic	ERJ-8GEYJ122V
14	1	R3	22 R, 5%, 1/4 W, Metal Film, 1206	Panasonic	ERJ-8GEYJ220V
15	1	R4	10 kΩ, 5%, 1/8 W, Metal Film, 0805	Panasonic	ERJ-6GEYJ103V
16	1	R5	150 R, 5%, 1/8 W, Metal Film, 0805	Panasonic	ERJ-6GEYJ151V
17	2	R6, R9	51.1 kΩ, 1%, 1/8 W, Metal Film, 0805	Panasonic	ERJ-6ENF5112V
18	1	R10	5.1 kΩ, 5%, 1/8 W, Metal Film, 0805	Panasonic	ERJ-6GEYJ512V
19	1	R7	0.10 R, 1%, 1/4 W, Metal Film, 0805	Phycomp	23505117107
20	1	R8	2.4 kΩ, 1%, 1/8 W, Metal Film, 0805	Panasonic	ERJ-6ENF2401V
21	1	R8A	3.9 kΩ, 1%, 1/8 W, Metal Film, 0805	Panasonic	ERJ-6ENF3901V
22	1	T1	Bobbin, EE16/8/5, Horizontal (EF16)	-	-
23	1	U1	TinySwitch-III, TNY279GN, SMD-8C	Power Integrations	TNY279GN
24	1	U2	OP AMP SINGLE LOW PWR SOT23-5	National Semiconductor	LM321MF
25	1	U3	2.495 V Shunt Regulator IC, 2%, -40 to 85C, SOT23	National Semiconductor	LM431AIM
26	1	Q1	NPN, Medium Power BJT, 40 V, 0.6 A, SOT-23	Philips	MMBT2222A
27	1	VR1	200 V, 5 W, 5%, DO204AC (DO-15)	Vishay	P6KE200A
28	1	VR2	20 V, 5%, 500 mW, DO-35	Vishay	BZX55C20
29	1	-	PCB, 0.8mm thick, 35 microns	-	-

5 Transformer Specification

5.1 Electrical Diagram

5.2 Mechanical Diagram

Figure 4 – Transformer Mechanical Drawing.

5.3 Electrical Specifications

Parameter	Condition	Spec
Electrical Strength, VAC	60 Hz, 1 second, from pin 1 – 6 to 7 – 12.	500
Nominal Primary Inductance, µH	Measured at 1 V pk-pk, typical switching frequency, between pin 4 to 6, with all other Windings open.	1082 ± 10%
Primary Leakage, μΗ	Measured between pin 4 to 6, with all other Windings shorted.	26.11

5.4 Materials

Item	Description
[1]	Core: EE16/8/5 (EF16), NC-2H or Equivalent, gapped for ALG of 73 nH/t ²
[2]	Bobbin: Generic EE16/8/5, 6 pri. + 6 sec. (Low profile, 12mm height max)
[3]	Barrier Tape: Polyester film 8.60 mm wide
[4]	Varnish
[5]	Magnet Wire: 31 AWG, Solderable Double Coated
[6]	Magnet Wire: 27 AWG, Solderable Double Coated

5.5 Transformer Construction

Primary Winding (Section 1)	Start on pin - 4 and wind 61 turns (x 1 filar) of item [5] in 2 layer(s) from left to right. At the end of 1st layer, continue to wind the next layer from right to left. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin - 3.
Таре	Add 1 layer of tape, item [3], for insulation.
Secondary Winding	Start on pin - 11 and reverse wind 20 turns (x 2 filar) of item [6] in 2 layer(s) from right to left. At the end of 1st layer, continue to wind the next layer from left to right. Spread the winding evenly across entire bobbin. Wind in opposite rotational direction as primary winding. Finish this winding on pin - 9.
Таре	Add 1 layer of tape, item [3], for insulation.
Primary Winding (Section 2)	Start on pin - 3 and wind 61 turns (x 1 filar) of item [5] in 2 layer(s) from left to right. At the end of 1st layer, continue to wind the next layer from right to left. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin - 6.
Таре	Add 1 layer of tape, item [3], for insulation.
Core Assembly	Assemble and secure core halves. Item [1].
Varnish	Dip varnish uniformly in item [4]. Do not vacuum impregnate.

6 Transformer Spreadsheet

ENTER APPLICATION VARIABLES Customer Customer VACMIN 195 Voltis Minimum AC Input Voltage VACMIN 265 Voltis Minimum AC Input Voltage IL 47 Voltis Minimum AC Input Voltage VO 20.00 Voltis Output Voltage Interview VO 20.00 Voltis Output Voltage VO 20.00 Voltis Output Voltage VO 20.00 Voltis Continuous Down'n Power 0.76 Watts Continuous Output Power 10 0.86 Into Detert data available Under 0.71 in to better data available Z 1.00 Z Factor. Ratio of secondary side losses to the power supply. Use 0.5 in to better data available Into Detert data available Cl 3.00 msceonds Bridge Feculier Conduction Time Estimate ClN 20.00 20 uFarads Input Capacitance Cl 3.00 msceonds Bridge Feculier Conduction Time Estimate ClN 20.00 Porestreads Input Capacitance	ACDC_TinySwitch- III_022007; Rev.1.24; Copyright Power Integrations 2007	INPUT	INFO	OUTPUT	UNIT	ACDC_TinySwitch-III_022007_Rev1- 24.xls; TinySwitch-III Continuous/Discontinuous Flyback Transformer Design Spreadsheet
VACMIN 195 Volis Minimum AC Input Voltage VACMAX 265 Volis Minimum AC Input Voltage IL 47 Hertz AC Mains Frequency VO 20.00 Voltage (at confinuous power) IO 0.76 Amps Power Supply Output Current (corresponding to peak power) Power 15.2 Watts Continuous Output Lorrent (corresponding to peak power) Z 1.00 means Efficiency Estimate at output terminals. Under 0.7 if no better data available Z 3.00 mescands Inder data available Z 20.00 20 uFarads Into Market 20.00 20 uFarads CiN 20.00 20<	ENTER APPLICATION VARIA	BLES		-		Customer
VACMAX 265 Maximum AC (roput Voltage) IL 47 Hertz AC Mains Frequency VO 20.00 Volts Output Voltage (a continuous power) IO 0.76 Amps Power Supply Output (Urrent (corresponding to peak power) Power 15.2 Watts Continuous Output holtage to peak power) In 0.86 Efficiency Estimate at output terminals, Under O.7 if no better data available Z 1.00 Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available IC 3.00 Power and total secondary side losses to urrent limit (caracitance) IC 3.00 20 urarads Chose Device TNY279P User defined TinySwitch-III Chose Configuration RED TNY279P User defined TinySwitch-III LIMITMAX 0.512 Amps Minimum Current Limit (iselad dapters), "STD' for standard our our limit filt (peak or higher power applications) ILIMITMA 0.550 Amps Minimum Device Switching Frequency IV21111 TM223P Maximum Acurent Limit Figl corduct ourrent Limit	VACMIN	195			Volts	Minimum AC Input Voltage
IL 47 Hertz AC Mains Frequency VO 20.00 VOIS Output Voltage (at continuous power) IO 0.76 Amps Power Supply Output Current (corresponding to peak power) Power 15.2 Watts Continuous Output Power n 0.86 Efficiency Estimate at output terminals. Under 0.7 if no better data available Z 1.00 Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available ENTER TinySwitch-III VARIABLES mesconds Bridge Rectifier Conducton Time Estimate Chosen Device TNY279P User defined TinySwitch-III Chose Configuration RED TVY279P User defined TinySwitch-III LIMITTMIN 0.512 Amps Mainum Current Limit (sealed adapter), STD" for standard current limit or INC" for increased current limit (peak or higher power applications) ILIMITTMA 0.512 Amps Mainum Current Limit ILIMITTMA 0.512 Amps Mainum Current Limit ILIMITTMA 0.550 Amps Mainum Current Limit ILIMITTMA 0.550 Amps Ma	VACMAX	265			Volts	Maximum AC Input Voltage
VO 20.00 Volts Output Voltage (a continuous power) IO 0.76 Amps Power Supply Output (Urrent) (corresponding to peak power) Power 15.2 Watts Continuous Output Power n 0.86 Efficiency Estimate at output terminals. Under 0.7 if no better data available Z 1.00 Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available IC 3.00 mseconds Bridge Rectifier Conduction Time Estimate CIN 20.00 20 uFarads Input Capadiance ENTER TinySwitch-III TNY279P User delined TinySwitch-III Chosen Dowie Chosen Dovice TNY279P User delined TinySwitch-III Chosen Configuration RED TNY279P User delined TinySwitch-III Enter "RED" for noticused current limit (geade adapters), "STD" for standard current limit or "NC" for increased current limit (peak or higher power applications) ILIMITMA 0.512 Amps Minimum Current Limit ILIMITMA 0.512 Amps Minimum Current Limit ILIMITMA 0.510 Amps Minimum Current Limit <td>fL</td> <td>47</td> <td></td> <td></td> <td>Hertz</td> <td>AC Mains Frequency</td>	fL	47			Hertz	AC Mains Frequency
IO 0.76 Amps Power Supply Output Current (corresponding to peak power) Power 15.2 Watts Continuous Output Power n 0.86 2 Continuous Output Power n 0.86 2 Continuous Output Power Z 1.00 Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available Z 3.00 20 mesconds Bridge Rectiler Conduction Time Estimate CIN 20.00 20 uFarads Input Capacitance ENTER TinySwitch-III TNY279P User defined TinySwitch-III Chosen Device TNY279P User defined TinySwitch-III Chose Configuration RED Reduced Current Enter "RED" for reduced current limit (sealed adapters), "STD" for standard current limit or INC" for increased current limit (peak or higher power applications) ILIMITTVP 0.512 Amps Minimum Current Limit limit (peak or higher power applications) VD 0.50 Args Timus of current limit or INC" for instate dat regueroy is trimmed for tighter tolerance) VDR 0.50 0.5 Volts Reflected	VO	20.00			Volts	Output Voltage (at continuous power)
Power Icorresponding to beak power) Power 15.2 Watts Continuous Output Herminals. Under 0,7 If no better data available Z 1.00 Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if c Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if c IC 3.00 Preseconds Bridge Rectifier Conduction Time Estimate ENTER TinySwitch-III VARIABLES Presconds Bridge Rectifier Conduction Time Estimate Chosen Device TMY279P User defined TinySwitch-III Chosen Device TMY279P User defined TinySwitch-III Chose Configuration RED Current Limit Enter "RED" for reduced current limit (gealed dapters). "STD" for standard current limit (geak or higher power applications) LIMITTMIN 0.512 Amps Minimum Current Limit LIMITTMAX 0.610 Amps Minimum Current Limit TSTP 124000 Hert Voltage (VOR < 135 V Recommended) VOR 125.00 125 Voltage Voltage (VOR < 135 V Recommended) VD 0.50 0.5 Voltage Voltage (VOR < 135 V Recommended) Ensure	10	0.76			Amps	Power Supply Output Current
Power 15.2 Watts Continuous Output Power n 0.86 1 15.2 Watts Continuous Output Power Z 1.00 2 Factor. Raito of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available Z 1.00 2 Factor. Raito of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available CIN 20.00 20 uFarads Input Capacitance ENTER TinySwitch-III VARIABLES 7 1 1 TinySwitch-III VARIABLES 1 1 1 Chosen Device 7 7 1 Chosen Device 7 7 1 Chosen Configuration RED Reduced Current Limit Enter "RED" for reduced current limit (sealed adapters), "STD" for standard current limit (beak or higher power applications) ILIMITTYP 0.512 Amps Minimum Current Limit ILIMITTYP 0.550 Amps Minimum Device Switching Frequency VOR 125.00 125 Vots Reflected Output Voltage (VOR < 135 V Recommended) VD 0.50 0.5 Vots Reflected Output Voltage (VOR < 135 V Recommended) VD 0.50 0.5 Vots Reflected Output Voltage (VOR < 135 V Recommended)	-				1	(corresponding to peak power)
n 0.86 Efficiency Estimate at output terminals. Under 0.7 If no better data available Z 1.00 Z Factor. Ralio of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available CIN 20.00 20 uFarads. Hinput Capacitance ENTER TinySwitch-III VARIABLES Imput Capacitance CiN 20.00 20 uFarads. Hinput Capacitance ENTER TinySwitch-III TNY279P User defined TinySwitch-III Chosen Device TNY279P User defined TinySwitch-III Chosen Device TVY279P Enter "RED" for reduced current limit (sealed adaptes), 'STD' for standard current limit (eak or higher power applications) ILIMITTYP 0.512 Amps Mammun Current Limit ILIMITYP 0.550 Amps Minimum Current Limit ILIMITYP 35.937 Ar2kHz Minimum Current Limit ILIMITYP 35.937 Ar2kHz Minimum Current Limit VDR 0.50 0.50 Volts Voltage (VOR < 135 V Recommended) VDS 0 0.50 Volts Voltage VOR < 135 V Recommended) VDS 0 0.50 Volts Voltage VOR < 135 V Recommended) VDS 0 0.00 Volta Bias Winding Diode Forward Voltage Drop VDB <td< td=""><td>Power</td><td></td><td></td><td>15.2</td><td>Watts</td><td>Continuous Output Power</td></td<>	Power			15.2	Watts	Continuous Output Power
Z 1.00 Under 0.7 if no better data available Z 1.00 Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available IC 3.00 20 uFarads Input Capacitance ENTER TinySwitch-III VARIABLES TNY279P User defined TinySwitch-III Imput Capacitance ENTER TinySwitch-III TNY279P User defined TinySwitch-III Imput Capacitance Chosen Device RED Reduced Enter "RED" for reduced current limit (sealed dapters), "STD" for standard current limit (sealed mapters), "STD" for standard current limit (n	0.86				Efficiency Estimate at output terminals.
Z 1.00 Image: Constraint of the power supply. Use 0.5 if no betwee supply. Use 0.5 if no						Under 0.7 if no better data available
Ite total losses in the power supply. Use 0.5 in to better data available ItC 3.00 mseconds Bridge Rectifier Conduction Time Estimate CIN 20.00 20 uFarads Input Capacitance ENTER TinySwitch-III TNY279P User defined TinySwitch-III Chosen Device TNY279P User defined TinySwitch-III Chose Configuration RED Reduced Current Limit Enter "RED" for reduced current limit (sealed adapters), "STD" for standard current limit or "NC" for increased current limit (peak or higher power applications) LIMITTYP 0.512 Amps Minimum Current Limit LIMITTYP 0.512 Amps Minimum Current Limit LIMITTYP 0.512 Amps Maximum Current Limit LIMITTYP 0.512 Amps Maximum Current Limit LIMITTYP 0.512 Amps Maximum Current Limit LIMITTYP 0.550 Ar2HZ Product or current limit VOR 125.00 125 Volts Current attain (KP < 6) VD 0.50 0.55 Volts Drap beak Current Ratio. (KP < 6) <	Z	1.00				Z Factor. Ratio of secondary side losses to
IC 3.00 mseconds Bridge Rectifier Conduction Time Estimate CIN 20.00 20 uFarads Input Capacitance ENTER TinySwitch-III VARIABLES 7NY279P User defined TinySwitch-III Chosen Device 7NY279P User defined TinySwitch-III Chosen Device 7NY279P Enter "RED" for reduced current limit (sealed adapters), "STD" for increased current limit (limit or "NC" for increased current limit quared and frequency is trimmed for tighter tolerance) ILIMITMAX 0.512 Amps Minimum Current Limit ILIMITAX 0.610 ArgStA Minimum Current limit quared and frequency is timmed for tighter tolerance) VOR 125.00 125 Volts Refected Output Voltage (VOR < 135 V Recommended)						the total losses in the power supply. Use 0.5
IC 3.00 mseconds Bridge Rectifier Conduction Time Estimate CIN 20.00 20 uFarads Input Capacitance ENTER TinySwitch-III TNY279P User defined TinySwitch-III Chosen Device TNY279P User defined TinySwitch-III Chose Configuration RED Reduced Enter "RED" for reduced current limit (called adapters). "STD" for standard current limit (peak or higher power applications) ILIMITYP 0.512 Amps Minimum Current Limit ILIMITYP 0.550 Aps Minimum Current Limit ILIMITYP 0.550 Propical Current Limit Minimum Current Limit ILIMITYP 0.550 Volts Reflected Output Voltage (VOR <135 V Recenterely the propic Switching Frequency (VOR						if no better data available
CIN 20.00 UFarads Input Capacitance ENTER TinySwitch-III TNY279P TVY279P User defined TinySwitch-III Chosen Device TNY279P User defined TinySwitch-III Chosen Configuration RED Reduced Current Limit Enter "RED" for reduced current limit (sealed adapters), "STD" for standard current limit or "INC" for increased current limit (peak or highers), "STD" for standard current limit or "INC" for increased current limit (peak or highers), "STD" for standard current limit (peak or highers), "STD" for standard current limit (peak or higher power applications) ILIMITTMIN 0.512 Amps Minimum Current Limit ILIMITTYP 0.610 Amps Minimum Device Switching Frequency I'2Imin 124000 Hertz Minimum Device Switching Frequency VOR 125.00 125 Volts Reformed for tighter tolerance) VD 0.50 0.5 Volts Output Winding Diode Forward Voltage Drop VD 0.50 0.5 Volts Transient Ripple to Peak Current Ratio (KP < 6)	tC	3.00			mseconds	Bridge Rectifier Conduction Time Estimate
ENTER TinySwitch-III VARIABLES Image: constraint of the second seco	CIN	20.00		20	uFarads	Input Capacitance
ENTER TinySwitch-III VARIABLES methods TinySwitch-III TNY279P User defined TinySwitch-III Chosen Device TNY279P User defined TinySwitch-III Chosen Configuration RED Reduced (sealed adapters), "STD" for reduced current limit or "INC" for increased current limit time tor higher power applications) ILIMITMIN 0.512 Amps Minimum Current Limit ILIMITMAX 0.610 Amps Maximum Current Limit ILIMITMAX 0.610 Amps Maximum Current Limit ILIMITMAX 0.610 Amps Maximum Current Limit ISININ 124000 Hertz Minimum Device Switching Frequency I^*2fmin 125.00 125 Volts Reflected Output Voltage (VOR < 135 V						
TinySwitch-III TNY279P User defined TinySwitch-III Chosen Device TNY279P Enter "RED" for reduced current limit (sealed adapters), "STD" for standard current limit (peak or higher power applications) ILIMITMIN 0.512 Amps Minimum Current Limit ILIMITTYP 0.550 Amps Typical Current limit (peak or higher power applications) ILIMITTYP 0.550 Amps Minimum Current Limit ILIMITMAX 0.610 Amps Maximum Current Limit ISmin 124000 Hertz Minimum Device Switching Frequency I*2fmin 125.00 125 Volts Reflected Output Voltage (VOR < 135 V Recommended)	ENTER TinySwitch-III VARIA	BLES				
Chosen Device TMY279P Enter "RED" for reduced current limit (sealed adapters), "STD" for standard current limit (sealed adapters), "STD" for standard discurrent limit (sealed adapters), "STD" for standard frequency is trimmed for tighter tolerance) VOR VOR 125.00 Hertz Minimum Device Switching Frequency is trimmed for tighter tolerance) Voltage VDS 125.00 125 Volts TingSwitch-III on-state Drain to Source Voltage VD 0.50 0.55 Volts TingSwitch-III on-state Drain to Source Voltage KP 1.31 Riple to Peak Current Ratio. Ensure KP_TRANSIENT > 0.25 Ensure KP_TRANSIENT > 0.25 VB	TinySwitch-III	TNY279P		TNY279P		User defined TinySwitch-III
Chose Configuration RED Reduced Ourrent Limit Enter "RED" for reduced current limit (sealed adapters), "STD" for standard current limit or "INC" for increased current limit (peak or higher power applications) ILIMITMIN 0.512 Amps Minimum Current Limit ILIMITMAX 0.610 Amps Minimum Current Limit ILIMITMAX 0.610 Amps Maximum Current Limit ILIMITMAX 0.610 Amps Maximum Current Limit ISmin 124000 Hertz Minimum Device Switching Frequency I^2fmin 125.00 125 Volts Reflected Output Voltage (VOR < 135 V Recommended) VDS 10 Volts TinySwitch-III on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop KP 1.31 Ripple to Peak Current Ratio (KP < 6)	Chosen Device		TNY279P			
Current Limit (sealed adapters), "STD" for standard current limit or "INC" for increased current limit (peak or higher power applications) ILIMITTYP 0.512 Amps Minimum Current Limit ILIMITYP 0.550 Amps Minimum Current Limit ILIMITYP 0.550 Amps Minimum Current Limit ILIMITYP 0.610 Amps Maximum Current Limit ILIMITYP 0.610 Amps Maximum Current Limit ILIMITYP 0.610 Amps Maximum Current Limit IVER 124000 Hetz Minimum Device Switching Frequency VP 125.00 125 Volts Reflected Output Voltage (VOR < 135 V Recommended) VDS 10 Volts Transient Ripple to Peak Current Ratio (KP < 6)	Chose Configuration	RED		Reduced		Enter "RED" for reduced current limit
Limit current limit or "INC" for increased current limit tor "INC" for increased current limit limit (peak or higher power applications) ILIMITMIN 0.512 Amps Minimum Current Limit ILIMITYP 0.550 Amps Typical Current Limit ILIMITMAX 0.610 Amps Maximum Current Limit ILIMITMAX 0.610 Amps Maximum Current Limit ILIMITMAX 124000 Hertz Minimum Device Switching Frequency I^2fmin 125.00 A*2kHz I^2f (product of current limit squared and frequency is trimmed for tighter tolerance) VOR 125.00 125 Volts Reflected Output Voltage (VOR < 135 V Recommended)	_			Current		(sealed adapters), "STD" for standard
ILIMITMIN 0.512 Amps Ilimit (peak or higher power applications) ILIMITTYP 0.550 Amps Typical Current Limit ILIMITMAX 0.610 Amps Maximum Current Limit ILIMITMAX 0.610 Amps Maximum Current Limit ILIMITMAX 0.610 Amps Maximum Current Limit IIMITMAX 0.610 Amps Maximum Current Limit ISmin 124000 Hertz Minimum Device Switching Frequency I*2fmin 35.937 A*2kHz Minimum Current Limit I*2fmin 35.937 A*2kHz Minimum Device Switching Frequency VOR 125.00 125 Volts Reflected Output Voltage (VOR < 135 V				Limit		current limit or "INC" for increased current
ILIMITMIN 0.512 Amps Minimum Current Limit ILIMITMAX 0.550 Amps Typical Current Limit ISmin 0.610 Amps Maximum Current Limit ISmin 124000 Hertz Minimum Device Switching Frequency I^2fmin 35.937 A^2kHz I*2f (product of current limit squared and requency is trimmed for tighter tolerance) VOR 125.00 125 Volts Reflected Output Voltage (VOR < 135 V Requency is trimmed for tighter tolerance)						limit (peak or higher power applications)
ILIMITTYP 0.550 Amps Typical Current Limit ILIMITMAX 0.610 Amps Maximum Current Limit ISmin 124000 Hertz Minimum Device Switching Frequency I^2fmin 35.937 A^2kHz I*2f (product of current limit squared and frequency is trimmed for tighter tolerance) VOR 125.00 125 Volts Reflected Output Voltage (VOR < 135 V Recommended)	ILIMITMIN			0.512	Amps	Minimum Current Limit
ILIMITMAX 0.610 Amps Maximum Current Limit ISmin 124000 Hertz Minimum Device Switching Frequency I^2fmin 35.937 A^2kHz I'2f (product of current limit squared and frequency is trimmed for tighter tolerance) VOR 125.00 125 Volts Reflected Output Voltage (VOR < 135 V Recommeded)	ILIMITTYP			0.550	Amps	Typical Current Limit
ISmin 124000 Hertz Minimum Device Switching Frequency I^2tmin 35.937 A?2Hz I^2t (product of current limit squared and frequency is trimmed for tighter tolerance) VOR 125.00 125 Volts Reflected Output Voltage (VOR < 135 V Recommended)	ILIMITMAX			0.610	Amps	Maximum Current Limit
I^2fmin 35.937 A^2kHz I^2f (product of current limit squared and frequency is trimmed for tighter tolerance) VOR 125.00 125 Volts Reflected Output Voltage (VOR < 135 V Recommended)	fSmin			124000	Hertz	Minimum Device Switching Frequency
VOR125.00125VoltsReflected Output Voltage (VOR < 135 V Recommended)VDS10VoltsTinySwitch-III on-state Drain to Source VoltageVD0.500.5VoltsOutput Winding Diode Forward Voltage DropKP1.31Ripple to Peak Current Ratio (KP < 6) Transient Ripple to Peak Current Ratio. Ensure KP_TRANSIENTVB00.00VoltsVB00.00VoltsVB00.00VoltsVB00.00VoltsVZOV00.00VoltsVZOV00.00VoltsVZOV00.00VoltsVZOV00.00VoltsVUU_TARGET00.00VoltsVUV_ACTUAL#N/AVoltsTarget DC under-voltage threshold, above which the power supply with startV_UV_ACTUAL#N/AWoltsTarget DC under-voltage threshold, above which the power supply with startV_UV_ACTUAL#N/AWoltsTarget DC under-voltage threshold, above which the power supply with startV_UV_ACTUAL#N/AWoltsTarget DC under-voltage threshold, above which the power supply with startV_UV_ACTUAL#N/AWoltsTarget DC under-voltage threshold, above which the power supply with startV_UV_ACTUAL#N/AWoltsTarget DC under-voltage threshold, above which the power supply with startV_UV_ACTUAL#N/AWoltsTarget DC under-voltage threshold, above which the power supply with startV_UV_ACTUA	I^2fmin			35.937	A^2kHz	I^2f (product of current limit squared and
VOR 125.00 125 Volts Reflected Output Voltage (VOR < 135 V Recommended) VDS 10 Volts TinySwitch-III on-state Drain to Source Voltage VD 0.50 0.5 Volts Output Winding Diode Forward Voltage Drop KP 1.31 Ripple to Peak Current Ratio (KP < 6)						frequency is trimmed for tighter tolerance)
VDSRecommended)VDS10VoltsTinySwitch-III on-state Drain to Source VoltageVD0.500.5VoltsOutput Winding Diode Forward Voltage DropKP1.31Ripple to Peak Current Ratio (KP < 6)	VOR	125.00		125	Volts	Reflected Output Voltage (VOR < 135 V
VDS 10 Volts TinySwitch-III on-state Drain to Source Voltage VD 0.50 0.5 Volts Output Winding Diode Forward Voltage Drop KP 1.31 Ripple to Peak Current Ratio (KP < 6)						Recommended)
VD0.500.5VoltsVoltage DropKP1.31Ripple to Peak Current Ratio (KP < 6)	VDS			10	Volts	TinySwitch-III on-state Drain to Source
VD 0.50 0.5 Volts Output Winding Diode Forward Voltage Drop KP 1.31 Ripple to Peak Current Ratio (KP < 6)						Voltage
KPDropKP_TRANSIENT1.31Ripple to Peak Current Ratio (KP < 6)	VD	0.50		0.5	Volts	Output Winding Diode Forward Voltage
KP 1.31 Ripple to Peak Current Ratio (KP < 6) KP_TRANSIENT 0.89 Transient Ripple to Peak Current Ratio. Ensure KP_TRANSIENT > 0.25 ENTER BIAS WINDING VARIABLES 0 0.00 Volts Bias Winding Voltage VB 0 0.00 Volts Bias Winding Diode Forward Voltage Drop NB 0 0.00 Volts Bias Winding Number of Turns VZOV 0 0.00 Volts Over Voltage Protection zener diode voltage. UVLO VARIABLES 0 0.00 Volts Over Voltage Protection zener diode voltage. VZOV 0 0.00 Volts Target DC under-voltage threshold, above which the power supply with start V_UV_TARGET 0 0.00 Wolts Target DC under-voltage based on standard value of RUV_ACTUAL RUV_IDEAL -0.09 MOhms Calculated value for UV Lockout resistor RUV_ACTUAL #N/A MOhms Closest standard value of resistor to RUV_IDEAL						Drop
KP_TRANSIENT 0.89 Transient Ripple to Peak Current Ratio. Ensure KP_TRANSIENT > 0.25 ENTER BIAS WINDING VARIABLES 0 0.00 Volts Bias Winding Voltage VB 0 0.00 Volts Bias Winding Diode Forward Voltage Drop NB 0 0.00 Volts Bias Winding Number of Turns VZOV 0 0.00 Volts Over Voltage Protection zener diode voltage. UVLO VARIABLES 0 0.00 Volts Over Voltage Protection zener diode voltage. V_UV_TARGET 0 0.00 Volts Target DC under-voltage threshold, above which the power supply with start V_UV_ACTUAL #N/A Wolts Typical DC start-up voltage based on standard value of RUV_ACTUAL RUV_IDEAL -0.09 MOhms Calculated value of resistor to RUV_ACTUAL	KP			1.31		Ripple to Peak Current Ratio (KP < 6)
Ensure KP_TRANSIENT > 0.25ENTER BIAS WINDING VARIABLES0VB00.00VDB00.00VOB00.00VS00.00VB00.00VDB00.00VZOV00.00VZOV00.00VZOV00.00VULO VARIABLES0VUV_TARGET0V_UV_TARGET0V_UV_ACTUAL#N/AVUV_IDEAL-0.09RUV_IDEAL#N/AWUV_ACTUAL#N/AWUV_IDEALWOHmsWUV_IDEALWOHmsWUV_IDEALWUV_IDEAL	KP_TRANSIENT			0.89		Transient Ripple to Peak Current Ratio.
ENTER BIAS WINDING VARIABLESVB00.00VoltsBias Winding VoltageVDB00.00VoltsBias Winding Diode Forward Voltage DropNB00.00Bias Winding Number of TurnsVZOV00.00VoltsOver Voltage Protection zener diode voltage.UVLO VARIABLES00.00VoltsTarget DC under-voltage threshold, above which the power supply with startV_UV_TARGET00.00VoltsTarget DC under-voltage threshold, above which the power supply with startV_UV_ACTUAL#N/AVoltsTypical DC start-up voltage based on standard value of RUV_ACTUALRUV_IDEAL-0.09MOhmsCalculated value for UV Lockout resistor RUV_IDEAL						Ensure KP_TRANSIENT > 0.25
ENTER BIAS WINDING VARIABLESVB00.00VoltsBias Winding VoltageVDB00.00VoltsBias Winding Number of TurnsNB00.00Bias Winding Number of TurnsVZOV00.00VoltsOver Voltage Protection zener diode voltage.UVLO VARIABLES00.00VoltsTarget DC under-voltage threshold, above which the power supply with startV_UV_TARGET00.00VoltsTarget DC under-voltage threshold, above which the power supply with startV_UV_ACTUAL#N/AVoltsTypical DC start-up voltage based on standard value of RUV_ACTUALRUV_IDEAL-0.09MOhmsCalculated value for UV Lockout resistor RUV_IDEAL						
VB 0 0.00 Volts Bias Winding Voltage VDB 0 0.00 Volts Bias Winding Diode Forward Voltage Drop NB 0 0.00 Bias Winding Number of Turns VZOV 0 0.00 Volts Over Voltage Protection zener diode voltage. UVLO VARIABLES 0 0.00 Volts Target DC under-voltage threshold, above which the power supply with start V_UV_TARGET 0 0.00 Volts Target DC start-up voltage based on standard value of RUV_ACTUAL RUV_IDEAL -0.09 MOhms Calculated value for UV Lockout resistor RUV_ACTUAL #N/A WOhms Closest standard value of resistor to RUV_IDEAL	ENTER BIAS WINDING VARIA	ABLES	1			
VDB 0 0.00 Volts Bias Winding Diode Forward Voltage Drop NB 0 0.00 Bias Winding Number of Turns VZOV 0 0.00 Volts Over Voltage Protection zener diode voltage. UVLO VARIABLES 0 0.00 Volts Target DC under-voltage threshold, above which the power supply with start V_UV_TARGET 0 0.00 Volts Target DC start-up voltage based on standard value of RUV_ACTUAL RUV_IDEAL -0.09 MOhms Calculated value for UV Lockout resistor RUV_ACTUAL #N/A Wohms Closest standard value of resistor to RUV_IDEAL	VB	0		0.00	Volts	Bias Winding Voltage
NB 0 0.00 Bias Winding Number of Turns VZOV 0 0.00 Volts Over Voltage Protection zener diode voltage. UVLO VARIABLES	VDB	0		0.00	Volts	Bias Winding Diode Forward Voltage Drop
VZOV 0 0.00 Volts Over Voltage Protection zener diode voltage. UVLO VARIABLES	NB			0.00		Bias Winding Number of Turns
UVLO VARIABLES Image: Constraint of the power supply with start V_UV_TARGET 0 0.00 Volts Target DC under-voltage threshold, above which the power supply with start V_UV_ACTUAL #N/A Volts Typical DC start-up voltage based on standard value of RUV_ACTUAL RUV_IDEAL -0.09 MOhms Calculated value for UV Lockout resistor RUV_ACTUAL #N/A Wohms Closest standard value of resistor to RUV_IDEAL	VZOV	0		0.00	Volts	Over Voltage Protection zener diode voltage.
UVLO VARIABLES Image: Constraint of the power supply with start V_UV_TARGET 0 0.00 Volts Target DC under-voltage threshold, above which the power supply with start V_UV_ACTUAL #N/A Volts Typical DC start-up voltage based on standard value of RUV_ACTUAL RUV_IDEAL -0.09 MOhms Calculated value for UV Lockout resistor RUV_ACTUAL #N/A MOhms Closest standard value of resistor to RUV_IDEAL						
V_UV_TARGET 0 0.00 Volts Target DC under-voltage threshold, above which the power supply with start V_UV_ACTUAL #N/A Volts Typical DC start-up voltage based on standard value of RUV_ACTUAL RUV_IDEAL -0.09 MOhms Calculated value for UV Lockout resistor RUV_ACTUAL #N/A MOhms Closest standard value of resistor to RUV_IDEAL	UVLO VARIABLES			_		
V_UV_ACTUAL #N/A Volts Typical DC start-up voltage based on standard value of RUV_ACTUAL RUV_IDEAL -0.09 MOhms Calculated value for UV Lockout resistor RUV_ACTUAL #N/A MOhms Closest standard value of resistor to RUV_IDEAL	V_UV_TARGET	0		0.00	Volts	Target DC under-voltage threshold, above which the power supply with start
RUV_IDEAL -0.09 MOhms Calculated value for UV Lockout resistor RUV_ACTUAL #N/A MOhms Closest standard value of resistor to RUV_IDEAL	V_UV_ACTUAL			#N/A	Volts	Typical DC start-up voltage based on
RUV_ACTUAL #N/A MOhms Closest standard value of resistor to RUV_IDEAL				-0 00	MOhme	Calculated value for LIV Lockout resistor
RUV_IDEAL				#N/A	MOhms	Closest standard value of resistor to
						RUV_IDEAL

ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES					
Core Type	EF16		EF16		Enter Transformer Core
Core		EF16		P/N:	PC40EF16-Z
Bobbin		EF16_BOBBIN		P/N:	EF16_BOBBIN
AE			0.201	cm^2	Core Effective Cross Sectional Area
LE			3.76	cm	Core Effective Path Length
AL	1100.00		1100	nH/T^2	Ungapped Core Effective Inductance
BW			10	mm	Bobbin Physical Winding Width
Μ			0	mm	Safety Margin Width (Half the Primary to
			-		Secondary Creepage Distance)
L	4.00		4		Number of Primary Lavers
NS	20		20		Number of Secondary Turns
			_		
DC INPUT VOLTAGE PARAME	TERS				
VMIN			250	Volts	Minimum DC Input Voltage
VMAX			375	Volts	Maximum DC Input Voltage
			0.0	10.10	
CUBBENT WAVEFORM					
SHAPE PARAMETERS					
DMAX			0.28		Duty Batio at full load minimum primary
Bith of			0.20		inductance and minimum input voltage
			0.07	Amne	Average Primary Current
IP			0.07	Amps	Minimum Peak Primary Current
II IP			0.51	Amps	Primary Dipple Current
			0.51	Amps	Primary PMS Current
INWIS			0.19	Anips	Finary RWS Current
		METERO			
		AWEIERS	1000		Turning Drive and Industry as 1 / 100/ to
LP			1082	uHenries	Typical Primary Inductance. +/- 10% to
					ensure a minimum primary inductance of
	10.00		10	0/	983 UH
LP_TOLERANCE	10.00		10	%	Primary inductance tolerance
NP			122		Primary Winding Number of Turns
ALG			/3	nH/1^2	Gapped Core Effective Inductance
BM			2693	Gauss	Maximum Operating Flux Density,
					BM<3000 is recommended
BAC			1346	Gauss	AC Flux Density for Core Loss Curves (0.5
					X Peak to Peak)
ur			1637		Relative Permeability of Ungapped Core
LG			0.32	mm	Gap Length (Lg > 0.1 mm)
BWE			40	mm	Effective Bobbin Width
OD	0.30		0.30	mm	Maximum Primary Wire Diameter including
					insulation
INS			0.05	mm	Estimated Total Insulation Thickness (= 2 *
					film thickness)
DIA			0.25	mm	Bare conductor diameter
AWG			31	AWG	Primary Wire Gauge (Rounded to next
					smaller standard AWG value)
СМ			81	Cmils	Bare conductor effective area in circular
					mils
CMA			436	Cmils/Amp	Primary Winding Current Capacity (200 <
					CMA < 500)
TRANSFORMER SECONDARY	DESIGN P	ARAMETERS			
Lumped parameters					
ISP			3.12	Amps	Peak Secondary Current
ISRMS			1.60	Amps	Secondary RMS Current
IRIPPI F			1.40	Amps	Output Capacitor BMS Ripple Current
CMS			319	Cmils	Secondary Bare Conductor minimum
0			010	011113	circular mils
AWGS			25	AWG	Secondary Wire Gauge (Rounded up to
			20	ANG	next larger standard AWG value)
					non naiger standard AWG Value

VOLTAGE STRESS PARAMETERS				
VDRAIN		657	Volts	Maximum Drain Voltage Estimate (Assumes 20% zener clamp tolerance and an additional 10% temperature tolerance)
PIVS		81	Volts	Output Rectifier Maximum Peak Inverse Voltage
TRANSFORMER SECONDARY DESI	GN PA	RAMETERS (MULTIPLE O	UTPUIS)	
1st output				
VO1		20	Volts	Main Output Voltage (if unused, defaults to
				single output design)
IO1		0.760	Amps	Output DC Current
PO1		15.20	Watts	Output Power
VD1		0.5	Volts	Output Diode Forward Voltage Drop
NS1		20.00		Output Winding Number of Turns
ISRMS1		1.596	Amps	Output Winding RMS Current
IRIPPLE1		1.40	Amps	Output Capacitor RMS Ripple Current
PIVS1		81	Volts	Output Rectifier Maximum Peak Inverse Voltage
Recommended Diodes		UF5401, SB3100		Recommended Diodes for this output
CMS1		319	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS1		25	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS1		0.46	mm	Minimum Bare Conductor Diameter
ODS1		0.50	mm	Maximum Outside Diameter for Triple Insulated Wire
Total power		15.2	Watts	Total Output Power

7 Performance Data

All measurements performed at room temperature, 50 Hz input frequency with resistive load.

7.1 Output Characteristic

22 20

18

16

14 12

10

Output Voltage (V) 8 6 230 VAC - - - 265 VAC 195 VAC 4 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.7 0.8 **Ouput Current (A)** Figure 5 – Output CVCC Characteristic.

Note: The plots for all three VAC input conditions show the same output voltage vs. output current results.

Ĩ

7.2 No-Load Input Power

7.3 Efficiency

Figure 7 – Efficiency Vs Input Voltage at Full Load Condition.

7.4 Load and Line Regulation

Figure 8 – Output voltage Vs Input Voltage with Varing Load Condition.

8 Waveforms

All measurements performed at room temperature, 50 Hz input frequency with an LED array as load. (17 V @ 0.7 A)

8.2 Drain Voltage and Current Start-up Profile

8.3 Output Voltage Start-up Profile

9 Output Ripple Measurements

9.1 Ripple Measurement Technique

For DC output ripple measurements, use a modified oscilloscope test probe to reduce spurious signals. Details of the probe modification are provided in the figures below.

Tie two capacitors in parallel across the probe tip of a 4987BA probe adapter. The capacitors include one (1) 0.1 μ F/50 V ceramic type and one (1) 1.0 μ F/50 V aluminum electrolytic. The aluminum-electrolytic capacitor is polarized, so always maintain proper polarity across DC outputs (see Figure 15 and Figure 16).

Figure 15 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed).

Figure 16 – Oscilloscope Probe with Probe Master (<u>www.probemaster.com</u>) 4987A BNC Adapter. (Modified with wires for ripple measurement, and two parallel decoupling capacitors added)

9.1.1 Measurement results

2007/12/22 02:28:32=100100k Norma1	2007/12/22 02:27:42z10
YOKOGAWA + 483 1MS/s 10ms/div	YOKOGAWA + 471 1MS/s 10ms/div
<< Maintluuk >>	<< Paint LUUk >>
CH2 10:1	CH2 10-1
AC 2011	AC 20MHz
ATOHYUM	••••••••••••••••••••••••••••••••••••••
N	
LE, NARA KURA NANGARDI KUKARA KURAKA KUNAKA KUNAKA KARANA KARANA NAKUDI KURANA MT	_A. AA. AA. KA. KA. KA. KA. KA. KA. KA. K
The analysis of the second standard and the second standard standard standard standard to the second standard sta	# na
Auto	Auto
0.1/8 0	9.170 0
150	150
Figure 17 – 195 VAC, LED Load.	Figure 18 – 265 VAC, LED Load.
Upper: Normal, 0.2 V / div, 10 ms / div.	Upper: Normal, 0.2 V / div, 10 ms / div.
Lower: Zoom 0.2 V/div 100 uc/div	Lower Zoom 0.2 V / div 100 us / div

10 Thermal Performance

Temperature measurements of key components were taken using T-type thermocouples. The thermocouples made contact with the components using high-temperaturewithstanding glue-type tape and heatsink compound.

The power-supply unit was sealed inside a tube and its ends were closed to eliminate any airflow. The unit was operated with an LED array load. Temperature measurements were taken after they stabilized for 1 hour at 85 °C ambient temperature.

Temperature (°C)							
Item	195 VAC	265 VAC					
Tube inside Ambient	85	84					
Input Bulk cap (C2)	101	99					
Primary TVS (VR1)	105	106					
TNY279GN (U1)	108	113					
Transformer EE16 (T1)	114	117					
Output cap (C6)	105	106					
Output diode (D2)	113	114					
Input power (watts)	13.01	13.12					
Output Voltage (volts)	16.95	16.94					
Output current (amps)	0.665	0.663					

Thermal shutdown occurs at 107 °C ambient, which indicates 20 °C operating margin (in ambient temperature) for TNY279GN. However, the power supply's electrolytic capacitors are operating at their maximum ratings.

Note: To use this design in a product, use capacitors with sufficiently high temperature ratings, to ensure high Mean Time Between Failure (MTBF) ratings.

11 Conducted EMI

Conducted emissions tests were performed with an LED array load (17 V / 0.7 A) at 230 VAC input.

Figure 19 – Conducted EMI, 230 V AC, Line, LED load. EN55022Q: QP limit; EN55022A: Average limit. Blue: QP scan; Red: Average scan.

Figure 20 – Conducted EMI, 230 V AC, Neutral, LED load. EN55022Q: QP limit; EN55022A: Average limit; Blue: QP scan; Red: Average scan.

12 Revision History

Date	Author	Revision	Description & changes	Reviewed
4-Apr-08	JD	1.2	First Release	JD/SGK

Notes

Notes

Notes

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2008 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 *e-mail: usasales@powerint.com*

CHINA (SHANGHAI)

Rm 1601/1610, Tower 1, Kerry Everbright City No. 218 Tianmu Road West, Shanghai, P.R.C. 200070 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 *e-mail: chinasales@powerint.com*

CHINA (SHENZHEN)

Rm A, B & C 4th Floor, Block C, Electronics Science and Technology Building, 2070 Shennan Zhong Rd, Shenzhen, Guangdong, China, 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 *e-mail: chinasales@powerint.com*

GERMANY

Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 *e-mail: eurosales@powerint.com*

INDIA

#1, 14th Main Road
Vasanthanagar
Bangalore-560052 India
Phone: +91-80-41138020
Fax: +91-80-41138023
e-mail: indiasales@powerint.com

ITALY

Via De Amicis 2 20091 Bresso MI – Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 *e-mail: eurosales@powerint.com*

JAPAN

Kosei Dai-3 Bldg., 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Phone: +81-45-471-1021 Fax: +81-45-471-3717 *e-mail: japansales@powerint.com*

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 *e-mail: koreasales@powerint.com*

SINGAPORE

51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 *e-mail:* singaporesales@powerint.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 *e-mail: taiwansales@powerint.com*

UNITED KINGDOM

1st Floor, St. James's House East Street, Farnham Surrey, GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 *e-mail: eurosales@powerint.com*

APPLICATIONS HOTLINE

World Wide +1-408-414-9660

APPLICATIONS FAX

World Wide +1-408-414-9760

